Math, asked by amishafilomeena1003, 13 hours ago

What must be subtracted from x ^ 4 + 2x ^ 3 - 2x ^ 2 + 4x + 5 so that the result is exactly divisible by x ^ 2 + 2x - 3​

Answers

Answered by Talpadadilip783
7

 \rule{300pt}{0.1pt}

 \fcolorbox{magenta}{lightgreen}{\boxed{{\mathbb{\pink{REFERR \:TO\: THE\:\: ATTACHMENT }}}} }

Attachments:
Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Here, Dividend is

\rm \: f(x) =  {x}^{4} +  {2x}^{3} -  {2x}^{2}  + 4x + 5 \\

and

Divisor is

\rm \: g(x) =  {x}^{2}  + 2x  - 3 \\

We know,

Dividend = Divisor × Quotient + Remainder

\rm\implies \: Dividend - Remainder = Divisor × Quotient

It means, if we subtract Remainder from the Dividend, then it will be exactly divisible by the Divisor.

So, using Long Division, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{2} + 1\:\:}}}\\ {\underline{\sf{ {x}^{2} + 2x - 3}}}& {\sf{\:  {x}^{4} + 2{x}^{3}  - {2x}^{2} + 4x + 5\:\:}} \\{\sf{}}& \underline{\sf{  \:  \:  \:  \:  \:  \: \:- {x}^{4} - 2{x}^{3} +  {3x}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \: \:\:}} \\ {{\sf{}}}& {\sf{\:  \:  \:  \:  \:  \:  \:  \:  \: {x}^{2} + 4x + 5 \: }} \\{\sf{}}& \underline{\sf{ \:  \:  \:  \:  \:  \:  \:  \:  \: - {x}^{2} - 2x + 3 \:  \:   \:\:}} \\ {\underline{\sf{}}}& {\sf{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2x + 8\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered} \\

So, from this long division we have,

\rm \: Remainder \:  =  \: 2x + 8 \\

So,

\rm\implies \:2x + 8 \: must \: be \: subtracted \: from \:  \\ \rm \:    \:  \:  \:  \:  \:  \:  \:  \:  \: {x}^{4} +  {2x}^{3} -  {2x}^{2}  + 4x + 5 \: so \: that \: \\ \rm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: it \: is \: exactlydivisible \: by \:  {x}^{2} + 2x - 3.   \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y)}\:\\ \\ \bigstar \: \bf{ {(x - y)}^{3} =  {x}^{3} -  {y}^{3} - 3xy(x - y) }\:\\ \\ \bigstar \: \bf{ {x}^{3}  +  {y}^{3} = (x + y)( {x}^{2}  - xy +  {y}^{2} )}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions