Math, asked by Anonymous, 11 months ago

Please can anyone answer?

Attachments:

Answers

Answered by rakhibansode1582
2

Answer:

please send questions , docx file is not opening

Answered by Anonymous
3

SoluTion :-

Expression

\sf \frac{cos\,58^{\circ}}{sin\,32^{\circ}}+\frac{sin\,22^{\circ}}{cos\,68^{\circ}}-\frac{cos\,38^{\circ}\:\:cosec\,52^{\circ}}{tab\,18^{\circ}\:\:tan\,25^{\circ}\:tan\,60^{\circ}\:tan\,72^{\circ}\:tan\,65^{\circ}}}

Using Complimentary angles to simplify,

\sf {sin\,x=cos(90-x)\:\:,\:\:cos\,x=sin(90-x)\:\: and\:\:tan\,x=cot(90-x)}

Now,

\sf {\frac{cos\,58^{\circ}}{cos\,(90-32)^{\circ}}+\frac{sin\,22^{\circ}}{sin\,(90-68)^{\circ}}-\frac{cos\,38^{\circ}\times\frac{1}{sin\,52^{\circ}}}{tab\,18^{\circ}\:\:tan\,25^{\circ}\:tan\,60^{\circ}\:cot\,(90-72)^{\circ}\:cot\,(90-65)^{\circ}}}

\sf {\Rightarrow \frac{cos\,58^{\circ}}{cos\,58^{\circ}}+\frac{sin\,22^{\circ}}{sin\,22^{\circ}}-\frac{cos\,38^{\circ}\times\frac{1}{cos\,(90-52)^{\circ}}}{tab\,18^{\circ}\:\:tan\,25^{\circ}\:tan\,60^{\circ}\:cot\,18^{\circ}\:cot\,25^{\circ}}}

\sf {\Rightarrow 1+1-\frac{cos\,38^{\circ}\times\frac{1}{cos\,38^{\circ}}}{tab\,18^{\circ}\:\:tan\,25^{\circ}\:tan\,60^{\circ}\:\times\frac{1}{tan\,18^{\circ}}\times\frac{1}{tan\,25^{\circ}}}}

\sf {\Rightarrow 1+1-\frac{1}{1\times\:tan\,60^{\circ}\:\times1}}}

\sf {\Rightarrow 1+1-\frac{1}{tan\,60^{\circ}}}}

\sf {\Rightarrow 2-\frac{1}{\sqrt{3}}\  ( \because tan\,60^{\circ}=\sqrt{3} )}

Value of Given Expression :-

\sf {\implies \frac{2\sqrt{3}-1}{\sqrt{3}}}

Similar questions