Math, asked by piyushasrani30, 4 months ago

please can you solve it for me ​

Attachments:

Answers

Answered by Reeta987
0

(4/5) ki power -5 ÷ (16/25) ki power -2

16/25 ÷ 256/625

0.64 ÷ 0.4096

1.5625

I hope help us❤

Answered by Anushka786
5

Question :

By what number should  \small \tt\purple{( \frac{4}{5} )^{ - 5}} be divided to get  \small \tt\orange{( \frac{16}{25} ) ^{ - 2} } ?

What to do ?

ln this question it is asked that what number we can take so that if we will divide  \small \tt\purple{( \frac{4}{5} )^{ - 5}} by that number it will result to \small \tt\orange{( \frac{16}{25} ) ^{ - 2} }

So for finding that number we need to assume that number to be any of the alphabetical number as you wish (like x ,a ,b etc..) so after taking that we will find that assumption alphabetical number and after finding it we will able to take out that number what it was !

Now , let's solve !

Solution :

 \pmb {\tt {\colorbox{brown}{assumption : }}}

Let consider x be the number which should divide \small \tt\purple{( \frac{4}{5} )^{ - 5}} to get

\small \tt\orange{( \frac{16}{25} ) ^{ - 2} } .

Now,

 \Rightarrow \bf {\color{green}x \div  (\frac{4}{5} )^{ - 5}  = ( \frac{16}{25} ) ^{ - 2} }

\Rightarrow \bf {\color{green}x \div  (\frac{5}{4} )^{  5}  = ( \frac{25}{16} ) ^{  2} }

\Rightarrow \bf {\color{green}x     = \frac{625}{256}   \times  (\frac{256}{625}  )^{1}  }

\Rightarrow \bf {\color{green}x     = \frac{\cancel{{625}} \: \purple{1}}{\cancel{{256}} \:  \purple{1}}   \times  (\frac {\cancel{{256}} \:  \purple{1}}{\cancel{{625}} \:  \purple{1}}  )^{1}  }

 \Rightarrow \bf {\color{green}x = (1) ^{1} = 1 }

 \boxed{\bf{ \therefore \: x = 1}}

Verification :

 \Rightarrow \bf {\color{magenta}1 \div  (\frac{4}{5} )^{ - 5}  = ( \frac{16}{25} ) ^{ - 2} }

\Rightarrow \bf {\color{magenta}1 \div  (\frac{5}{4} )^{  5}  = ( \frac{25}{16} ) ^{  2} }

\Rightarrow \bf {\color{magenta}1     = \frac{625}{256}   \times  (\frac{256}{625}  )^{1}  }

\Rightarrow \bf {\color{magenta}1    = \frac{\cancel{{625}} \: \purple{1}}{\cancel{{256}} \:  \purple{1}}   \times  (\frac {\cancel{{256}} \:  \purple{1}}{\cancel{{625}} \:  \purple{1}}  )^{1}  }

\Rightarrow \bf {\color{magenta}1 = (1) ^{1} = 1 }

 \boxed{\bf \pink{ \therefore \: 1 = 1}}

 \tt{hence \: \: verified }

Similar questions