please derive V^2=u^2+2as numerically
Answers
Taking the square of both side
Answer:
2av
2
=u
2
+2a
v = u + at \: (from \: \: 1)v=u+at(from1)
Taking the square of both side
\begin{lgathered}v ^{2} = (u + at) ^{2} \\\end{lgathered}
v
2
=(u+at)
2
v ^{2} = {u}^{2} + {at}^{2} + 2uatv
2
=u
2
+at
2
+2uat
{v}^{2} = {u}^{2} + {a}^{2} {t}^{2} + 2uatv
2
=u
2
+a
2
t
2
+2uat
{v}^{2} = {u}^{2} + \frac{2}{2} {a}^{2} {t}^{2} + 2uatv
2
=u
2
+
2
2
a
2
t
2
+2uat
{v}^{2} = {u}^{2} + 2a( \frac{1}{2} a {t}^{2} + ut)v
2
=u
2
+2a(
2
1
at
2
+ut)
{v}^{2} = {u}^{2} + 2asv
2
=u
2
+2as
Explanation:
2av
2
=u
2
+2a
v = u + at \: (from \: \: 1)v=u+at(from1)
Taking the square of both side
\begin{lgathered}v ^{2} = (u + at) ^{2} \\\end{lgathered}
v
2
=(u+at)
2
v ^{2} = {u}^{2} + {at}^{2} + 2uatv
2
=u
2
+at
2
+2uat
{v}^{2} = {u}^{2} + {a}^{2} {t}^{2} + 2uatv
2
=u
2
+a
2
t
2
+2uat
{v}^{2} = {u}^{2} + \frac{2}{2} {a}^{2} {t}^{2} + 2uatv
2
=u
2
+
2
2
a
2
t
2
+2uat
{v}^{2} = {u}^{2} + 2a( \frac{1}{2} a {t}^{2} + ut)v
2
=u
2
+2a(
2
1
at
2
+ut)
{v}^{2} = {u}^{2} + 2asv
2
=u
2
+2as