Math, asked by parvathyAjit, 10 months ago

Please do it fast...​

Attachments:

Answers

Answered by NailTheArtist2
2

 \huge \bf \underline{answer}

Given = AB//CD

RTP = AOB~DOC

Proof = AB ~ CD {Given that they are parrallel}

<O= <O {vertically opposite angles}

<A = <D {Interior opposit angles are equal}

...Hence proved

Answered by Unni007
2

\displaystyle\sf{Given\:,

\displaystyle\sf{AB||CD

\displaystyle\sf{In \triangle AOB \:and\: \triangle DOC\:,

  • \displaystyle\sf{&lt;AOB = &lt;DOC\:(Vertically\:opposite\:angles)
  • \displaystyle\sf{&lt;OAB = &lt;ODC\:(Alternate\:angles)
  • \displaystyle\sf{&lt;ABO = &lt;DCO\:(Alternate\:angles)

\boxed{\displaystyle\sf{\therefore \triangle AOB \sim \triangle DOC\:(AAA\:similarity)}}

Similar questions