Math, asked by notcop, 1 year ago

please do the requested questions in notebook ​

Attachments:

Answers

Answered by FisahFisah
6

Answer:

To prove 1/√2 is irrational

Let us assume that √2 is irrational 

1/√2 = p/q (where p and q are co prime)

q/p = √2

q     = √2p

squaring both sides

q²   = 2p²                                                  .....................(1)

By theorem 

q is divisible by 2

∴ q = 2c ( where c is an integer)

 putting the value of q in equitation 1

2p² = q² = 2c² =4c²

p² =4c² /2 = 2c²

p²/2 = c² 

by theorem p is also divisible by 2

But p and q are coprime

This is a contradiction which has arisen due to our wrong assumption

∴1/√2 is irrational

Answered by DeviIQueen
3

refer to the attachment!!!!

Attachments:
Similar questions