Math, asked by athishvaishu123, 28 days ago

please do this and send
please guys​

Attachments:

Answers

Answered by CopyThat
42

Answer :-

\left[\begin{array}{ccc}4&9\\5&7\\\end{array}\right] is the matrix.

Step-by-step explanation :-

Given :

A = \left[\begin{array}{ccc}1&0\\2&1\end{array}\right] and B = \left[\begin{array}{ccc}2&3\\-1&0\end{array}\right].

To find :

A² + AB + B².

Solution :

A² :-

\left[\begin{array}{ccc}1&0\\2&1\end{array}\right]  \times \left[\begin{array}{ccc}1&0\\2&1\end{array}\right]

∴,

(1×1) + (0×2) (1×0) + (0×1)

(2×1) + (1×2) (2×0) + (1×1)

\left[\begin{array}{ccc}1&0\\4&1\end{array}\right] = A²

B² :-

\left[\begin{array}{ccc}2&3\\-1&0\end{array}\right]  \times  \left[\begin{array}{ccc}2&3\\-1&0\end{array}\right]

∴,

(2×1) + (3×-1) (2×3) + (3×0)

(-1×2) + (0×-1) (-1×3) + (0×0)

\left[\begin{array}{ccc}1&6\\-2&0\\\end{array}\right] = B²

AB :-

\left[\begin{array}{ccc}1&0\\2&1\end{array}\right]  \times  \left[\begin{array}{ccc}2&3\\-1&0\end{array}\right]

(1×2) + (0×-1) (1×3) + (0×0)

(2×2) + (1×-1) (2×3) + (1×0)

\left[\begin{array}{ccc}2&3\\3&6\end{array}\right] = AB

A² + AB + B² :-

\left[\begin{array}{ccc}1&0\\4&1\end{array}\right] + \left[\begin{array}{ccc}2&3\\3&6\end{array}\right] + \left[\begin{array}{ccc}1&6\\-2&0\\\end{array}\right]

(1+2+1) (0+3+6)

(4+3+-2) (1+6+0)

\left[\begin{array}{ccc}4&9\\5&7\\\end{array}\right] = A² + AB + B²

Similar questions