Math, asked by MishalShazz, 1 year ago

. Please do this I need to submit

Attachments:

Answers

Answered by DaIncredible
1
Hey friend,
Here is the answer you were looking for:
(i) \frac{1}{ \sqrt{8} }  \\

On rationalizing the denominator we get,

 =  \frac{1}{ \sqrt{8} }  \times  \frac{ \sqrt{8} }{ \sqrt{8} }  \\  \\  =  \frac{ \sqrt{8} }{ {( \sqrt{8} )}^{2} }  \\  \\  =  \frac{ \sqrt{8} }{8}

(ii) \frac{ \sqrt{5} }{2 \sqrt{3} }  \\

On rationalizing the denominator we get,

 =  \frac{ \sqrt{5} }{2 \sqrt{3} }  \times  \frac{ 2\sqrt{3} }{2 \sqrt{3} }  \\  \\  =  \frac{ \sqrt{5} \times 2 \sqrt{3}  }{ {(2 \sqrt{3} )}^{2} }  \\  \\  =  \frac{2 \sqrt{15} }{12}  \\  \\  =  \frac{ \sqrt{15} }{6}

(iii)  \frac{1}{4 +  \sqrt{3} }  \\

On rationalizing the denominator we get,

 =  \frac{1}{4 +  \sqrt{3} }  \times  \frac{4 -  \sqrt{3} }{4 -  \sqrt{3} }  \\

Using the denominator we get,

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 =  \frac{ 4 -  \sqrt{3} }{ {(4)}^{2} -  {( \sqrt{3} )}^{2}  }  \\  \\  =  \frac{4 -  \sqrt{3} }{16 - 3}  \\  \\  =  \frac{4 -  \sqrt{3} }{13}
(iv) \frac{11 - 2 \sqrt{2} }{11 + 2 \sqrt{2} }  \\

On rationalizing the denominator we get,

 =  \frac{11 - 2 \sqrt{2} }{11 + 2 \sqrt{2} }  \times  \frac{11  -  2 \sqrt{2} }{11  -  2 \sqrt{2} }  \\

Using the identities :

 =  \frac{ {(11)}^{2} +  {(2 \sqrt{2} )}^{2}   - 2(11)(2 \sqrt{2} )}{ {(11)}^{2} -  {(2 \sqrt{2} )}^{2}  }  \\  \\  =  \frac{121 + 8 - 44 \sqrt{2} }{121 - 8}  \\  \\  =  \frac{129 - 44 \sqrt{2} }{113}  \\

Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺

MishalShazz: thankzz❤❤❤
DaIncredible: my pleasure... glad to help
Similar questions