please do this two questions fast...please
Attachments:
Answers
Answered by
12
1.
R.H.S = 1 + sec A
L.H.S = (sin A tan A ) / ( 1 - cos A )
Using identity,
⇒tan A = sin A / cos A
= [ sin A ( sin A / cos A ) ] / ( 1 - cos A )
= ( sin²A / cos A ) / ( 1 - cos A )
Using identity,
⇒ sin²A = 1 - cos²A
= [ ( 1 - cos²A ) / cos A ] / ( 1 - cos A )
= [ ( 1² - cos²A ) / cos A ] / ( 1 - cos A )
Using identity,
⇒( a² - b² ) = ( a + b ) ( a - b )
= [ ( 1 + cos A ) ( 1 - cos A ) / cos A ] / ( 1 - cos A )
= ( 1 + cos A ) / cos A
= ( 1 / cos A ) + ( cos A / cos A )
Using identity,
⇒ sec A = ( 1 / cos A )
= sec A + 1
= 1 + sec A ( R.H.S )
Proved !!
2.
R.H.S = ( 1 - tan A )² / ( 1 - cot A )²
Using identity,
⇒ ( a - b )² = ( a² + b² - 2ab )
= ( 1² + tan²A - 2 tan A ) / ( 1² + cot²A - 2 cot A )
= ( 1 + tan²A - 2 tan A ) / ( 1 + cot²A - 2 cot A )
Using identity,
⇒ ( 1 + tan²A ) = sec²A
and,
⇒ ( 1 + cot²A ) = cosec²A
= ( sec²A - 2 tan A ) / ( cosec²A - 2 cot A )
Using identity,
⇒ sec²A = ( 1 / cos²A )
⇒ tan A = ( sin A / cos A )
⇒cosec²A = ( 1 / sin² A )
⇒ cot A = cos A / sin A
= [ ( 1 / cos²A ) - 2( sin A / cos A ) ] / [ ( 1 / sin²A ) - 2 ( cos A / sin A ) ]
= [ ( 1 - 2 sin A cos A ) / cos²A ] / [ ( 1 - 2 sin A cos A ) / sin²A ]
= ( 1 / cos²A ) / ( 1 / sin²A )
= ( sin²A / cos²A )
= tan²A ( R.H.S )
L.H.S = ( 1 + tan²A ) / ( 1 + cot²A )
Using identity,
⇒ ( 1 + tan²A ) = sec²A
⇒ ( 1 + cot²A ) = cosec²A
= ( sec²A ) / ( cosec²A )
Using identity,
⇒ sec A = ( 1 / cos A )
⇒ cosec A = ( 1 / sin A )
= ( 1 / cos²A ) / ( 1 / sin²A )
= ( sin²A / cos²A )
= tan²A ( R.H.S )
Proved !!
R.H.S = 1 + sec A
L.H.S = (sin A tan A ) / ( 1 - cos A )
Using identity,
⇒tan A = sin A / cos A
= [ sin A ( sin A / cos A ) ] / ( 1 - cos A )
= ( sin²A / cos A ) / ( 1 - cos A )
Using identity,
⇒ sin²A = 1 - cos²A
= [ ( 1 - cos²A ) / cos A ] / ( 1 - cos A )
= [ ( 1² - cos²A ) / cos A ] / ( 1 - cos A )
Using identity,
⇒( a² - b² ) = ( a + b ) ( a - b )
= [ ( 1 + cos A ) ( 1 - cos A ) / cos A ] / ( 1 - cos A )
= ( 1 + cos A ) / cos A
= ( 1 / cos A ) + ( cos A / cos A )
Using identity,
⇒ sec A = ( 1 / cos A )
= sec A + 1
= 1 + sec A ( R.H.S )
Proved !!
2.
R.H.S = ( 1 - tan A )² / ( 1 - cot A )²
Using identity,
⇒ ( a - b )² = ( a² + b² - 2ab )
= ( 1² + tan²A - 2 tan A ) / ( 1² + cot²A - 2 cot A )
= ( 1 + tan²A - 2 tan A ) / ( 1 + cot²A - 2 cot A )
Using identity,
⇒ ( 1 + tan²A ) = sec²A
and,
⇒ ( 1 + cot²A ) = cosec²A
= ( sec²A - 2 tan A ) / ( cosec²A - 2 cot A )
Using identity,
⇒ sec²A = ( 1 / cos²A )
⇒ tan A = ( sin A / cos A )
⇒cosec²A = ( 1 / sin² A )
⇒ cot A = cos A / sin A
= [ ( 1 / cos²A ) - 2( sin A / cos A ) ] / [ ( 1 / sin²A ) - 2 ( cos A / sin A ) ]
= [ ( 1 - 2 sin A cos A ) / cos²A ] / [ ( 1 - 2 sin A cos A ) / sin²A ]
= ( 1 / cos²A ) / ( 1 / sin²A )
= ( sin²A / cos²A )
= tan²A ( R.H.S )
L.H.S = ( 1 + tan²A ) / ( 1 + cot²A )
Using identity,
⇒ ( 1 + tan²A ) = sec²A
⇒ ( 1 + cot²A ) = cosec²A
= ( sec²A ) / ( cosec²A )
Using identity,
⇒ sec A = ( 1 / cos A )
⇒ cosec A = ( 1 / sin A )
= ( 1 / cos²A ) / ( 1 / sin²A )
= ( sin²A / cos²A )
= tan²A ( R.H.S )
Proved !!
Attachments:
harshu44:
i will be really serious if u dont talk with me
Answered by
16
◢GIVEN
______________________________
◢TAKING LHS :-
_______________________________
◢NOW
┌◢TAKING RHS :-
_________________________________
◢SO
◢HENCE
=> LHS = RHS ___________[◢PRPVED]
=====================================
☆☆
______________________________
◢TAKING LHS :-
_______________________________
◢NOW
┌◢TAKING RHS :-
_________________________________
◢SO
◢HENCE
=> LHS = RHS ___________[◢PRPVED]
=====================================
☆☆
Similar questions