Math, asked by saumyabhuyare, 9 months ago

please don't give irritating answer solve fast it's urgent​

Attachments:

Answers

Answered by amitkumar44481
67

AnsWer :

y = √3 and y = -3√3.

Solution :

We have Equation,

=> y² +2√3y -9 = 0.

=> y² + 3√3y -√3 -9 = 0.

=> y(y+ 3√3) -√3 (y + 3√3 ) = 0.

=> (y-√3)(y + 3√3).

\rule{40}1

Either,

=> y + 3√3 = 0.

=> y = -3√3.

\rule{40}1

Or,

=> y-√3 = 0.

=> y = √3.

\rule{200}3

Now, Let try by Quadratic Formula,

 \tt  \dagger \:  \:  \:  x =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

we have,

  • a = 1.
  • b = 2√3.
  • c = -9.

Putting all given value.

 \tt\longmapsto  \frac{ - 2 \sqrt{3} \pm \sqrt{ ({2 \sqrt{3} )}^{2} - 4 \times 1 \times  - 9 }  }{2}

 \tt\longmapsto  \frac{ - 2 \sqrt{3} \pm \sqrt{48}  }{2}

\tt\longmapsto  \frac{ - 2 \sqrt{3}  \pm4 \sqrt{3} }{2}

\tt\longmapsto  \frac{2( -  \sqrt{3} \pm2 \sqrt{3}  )}{2}

\tt\longmapsto  \frac{ -  \sqrt{3} \pm2 \sqrt{3}  }{2}

\rule{40}1

Either,

\tt\longmapsto   y = {-  \sqrt{3}  - 2 \sqrt{3} }

\tt\longmapsto  y = -  3 \sqrt{3} .

\rule{40}1

Or,

\tt\longmapsto  y =  -  \sqrt{3}  + 2 \sqrt{3} .

\tt\longmapsto  y =  \sqrt{3} .

Therefore, the value of y be √3 and -3√3.

Answered by gdkedar1972
15

Answer:

Hey mate plzz refer the above attachment for the answer......

HOPE IT WILL HELP YOU ❤️❤️❤️

plzzz mark me as BRAINLIEST ❤️❤️❤️

Attachments:
Similar questions