Math, asked by Anonymous, 6 months ago

Please don't post irrelevant answers

Attachments:

Answers

Answered by sensanjaya93
1

Step-by-step explanation:

Hope it will help you.

Marks as brainest

Attachments:
Answered by Anonymous
9

Answer:

\sf{1. \ \sqrt{\dfrac{3x}{x+1}}+\sqrt{\dfrac{x+1}{\sqrt3}}=2,}

\sf{when \ x\neq0 \ and \ x\neq-1}

Solution:

\sf{\leadsto{\sqrt{\dfrac{3x}{x+1}}+\sqrt{\dfrac{x+1}{\sqrt3}}=2}}

\sf{Let \ \sqrt{\dfrac{3x}{x+1}}=m}

\sf{\therefore{m+\dfrac{1}{m}=2}}

\sf{Multiply \ throughout \ by \ m}

\sf{\therefore{m^{2}+1=2m}}

\sf{\therefore{m^{2}-2m+1=0}}

\sf{\therefore{m^{2}-m-m+1=0}}

\sf{\therefore{m(m-1)-1(m-1)=0}}

\sf{\therefore{(m-1)(m-1)=0}}

\sf{\therefore{m=1 \ or \ 1}}

\sf{The \ value \ of \ m=1}

\sf{But, \ \sqrt{\dfrac{3x}{x+1}}=m}

\sf{\therefore{\sqrt{\dfrac{3x}{x+1}}=1}}

\sf{On \ squaring \ both \ sides, \ we \ get}

\sf{\therefore{\dfrac{3x}{x+1}=1}}

\sf{\therefore{3x=x+1}}

\sf{\therefore{x=\dfrac{1}{2}}}

\sf\purple{\tt{\therefore{The \ value \ of \ x \ is \ \dfrac{1}{2}.}}}

________________________________

\sf{2. \ 2(x+\dfrac{1}{x})^{2}-7(x+\dfrac{1}{x})+5=0,}

\sf{when \ x\neq0}

Solution:

\sf{\leadsto{2(x+\dfrac{1}{x})^{2}-7(x+\dfrac{1}{x})+5=0}}

\sf{Let \ x+\dfrac{1}{x}=m}

\sf{\therefore{2m^{2}-7m+5=0}}

\sf{\therefore{2m^{2}-2m-5m+5=0}}

\sf{\therefore{2m(m-1)-5(m-1)=0}}

\sf{\therefore{(2m-5)(m-1)=0}}

\sf{\therefore{m=\dfrac{5}{2} \ or \ 1}}

\sf{when \ m=\dfrac{5}{2}}

\sf{x+\dfrac{1}{x}=\dfrac{5}{2}}

\sf{Multiply \ throughout \ by \ 2x}

\sf{\therefore{2x^{2}-5x+2=0}}

\sf{\therefore{2x^{2}-4x-x+2=0}}

\sf{\therefore{2x(x-2)-1(x-1)=0}}

\sf{\therefore{(2x-1)(x-2)=0}}

\sf{\therefore{x=\dfrac{1}{2} \ or \ 2}}

\sf{when \ m=1}

\sf{x+\dfrac{1}{x}=1}

\sf{Multiply \ throughout \ by \ x, \ we \ get}

\sf{x^{2}-x+1=0}

\sf{By \ quadratic \ formula, \ we \ get}

\sf{x=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}}

\sf{\therefore{x=\dfrac{1\pm\sqrt{-3}}{2}}}

\sf{These \ roots \ are \ not \ real \ so \ not \ admissible.}

\sf\purple{\tt{\therefore{The \ values \ of \ x \ are \ \dfrac{1}{2} \ and \ 2.}}}

________________________________

\sf{3. \ (x^{2}+\dfrac{1}{x^{2}})-5(x+\dfrac{1}{x})+6=0,}

\sf{when \ x\neq0}

Solution:

\sf{\leadsto{(x^{2}+\dfrac{1}{x^{2}})-5(x+\dfrac{1}{x})+6=0}}

\sf{In \ a^{2}+b^{2}=(a+b)^{2}-2ab}

\sf{If \ a=x \ and \ b=\dfrac{1}{x}}

\sf{x^{2}+\dfrac{1}{x^{2}}=(x+\dfrac{1}{x})^{2}-2x\times\dfrac{1}{x}}

\sf{\therefore{x^{2}+\dfrac{1}{x^{2}}=(x+\dfrac{1}{x})^{2}-2}}

\sf{Substitute \ in \ given \ equation}

\sf{\therefore{(x+\dfrac{1}{x})^{2}-2-5(x+\dfrac{1}{x})+6=0}}

\sf{Substitute \ x+\dfrac{1}{x}=m}

\sf{\therefore{m^{2}-2-5m+6=0}}

\sf{\therefore{m^{2}-5m+4=0}}

\sf{\therefore{m^{2}-m-4m+4=0}}

\sf{\therefore{m(m-1)-4(m-1)=0}}

\sf{\therefore{(m-1)(m-4)=0}}

\sf{\therefore{m=1 \ or \ 4}}

\sf{when \ m=1}

\sf{x+\dfrac{1}{x}=1}

\sf{Multiply \ throughout \ by \ x, \ we \ get}

\sf{x^{2}-x+1=0}

\sf{By \ quadratic \ formula, \ we \ get}

\sf{x=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}}

\sf{\therefore{x=\dfrac{1\pm\sqrt{-3}}{2}}}

\sf{These \ roots \ are \ not \ real \ so \ not \ admissible.}

\sf{when \ m=4,}

\sf{x+\dfrac{1}{x}=4}

\sf{Multiply \ throughout \ by \ x, \ we \ get}

\sf{x^{2}-4x+1=0}

\sf{By \ quadratic \ formula}

\sf{x=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}}

\sf{\therefore{x=\dfrac{4\pm\sqrt{12}}{2}}}

\sf{\therefore{x=2\pm\sqrt3}}

\sf\purple{\tt{\therefore{The \ values \ of \ x \ are \ 2+\sqrt3}}}

\sf\purple{\tt{and \ 2-\sqrt3.}}

Similar questions