Math, asked by rakshithabs10, 10 months ago

please explain answer for this question ​

Attachments:

Answers

Answered by rishu6845
6

Answer:

\bold{c) \:  \: 0}

Step-by-step explanation:

\bold{Given} =  >  \alpha  \: and \:  \beta  \: are \: the \: roots \: of \: equation \\  {x}^{2}  - a(x - 1) + b = 0

\bold{To \: find} =  > value \: of \\  \dfrac{1}{ { \alpha }^{2}  - a \alpha }  +  \dfrac{1}{ { \beta }^{2} - a \beta  }  +  \dfrac{2}{a + b}

\bold{ Concept \: used} =  > \\  roots \: of \: equation \: always \: satisfy \: its \:  own\: equation

\bold{Solution} =  >  \\  {x}^{2}  - a(x - 1) + b = 0 \\ roots \: of \: given \: equation \: is \:  \alpha  \: and \beta

satisfying \: given \: equation \: by \:  \alpha

 =  >  { \alpha }^{2}  - a( \alpha  - 1) + b = 0

 =  >  { \alpha }^{2}  - a \alpha  + a + b = 0

 =  >  { \alpha }^{2}  - a \alpha  =  - (a  + b)

similarly \: we \: get \\  { \beta }^{2}  - a \beta  =  - (a + b)

now

 \dfrac{1}{ { \alpha }^{2}  - a \alpha }  +  \dfrac{1}{ { \beta }^{2} - a \beta  }  +  \dfrac{2}{a + b}

 =  \dfrac{1}{ - (a + b)}  +  \dfrac{1}{ - (a + b)}  +  \dfrac{2}{(a + b)}

 =  -  \dfrac{1}{a + b}   -  \dfrac{1}{a + b}  +  \dfrac{2}{a + b}

 =   - \dfrac{2}{a + b}  +  \dfrac{2}{a + b}

 = 0

Similar questions