Question number 61 if u solve this you will be awarded 8 points..
Attachments:
priyakonnothjp:
Please help me with this question
Answers
Answered by
2
i am pankaj .....sorry for wait
Attachments:
Answered by
2
LHS = Tan^3A / ( 1+ Tan^2A) + Cot^3A / (1 + Cot^2a)
=Tan^3A / Sec^2A + Cot^3A / Cosec^2A
=(sin^3A/cos^3A) / (1 / Cos^2A) + (Cos^3A/Sin^3A) / (1 / Sin^2A)
=Sin^3A/CosA + Cos^3A/SinA
= (Sin^4A + Cos^4A) / SinA.CosA
= [ (Sin^2A + Cos^2A)^2 - 2Sin^2A.Cos^2A] / SinA.CosA
= ( 1- 2Sin^A.Cos^A)/ SinA.CosA
RHS = SecA CosecA - 2sinAcosA
=1/CosA . 1/SinA - 2SinACosA
= (1 - Sin^2A.Cos^2A) / sinAcosA
Hence LHS = RHS
Plz MARK AS BRAINLIEST....
Similar questions