Math, asked by ashishjaimonvk, 10 months ago


Please explain the full answer.....................

Attachments:

Answers

Answered by Sudhir1188
6

ANSWER:

The value of the expression is 0.

GIVEN:

( \dfrac{x {}^{a} }{x {}^{b} } ) {}^{a + b}  \times ( \dfrac{x {}^{b} }{x {}^{c} } ) {}^{b + c}  \times ( \dfrac{x {}^{c} }{x {}^{a} } ) {}^{c + a}

TO FIND:

The value of above expression.

SOLUTION:

 = ( \dfrac{x {}^{a} }{x {}^{b} } ) {}^{a + b}  \times ( \dfrac{x {}^{b} }{x {}^{c} } ) {}^{b + c}  \times ( \dfrac{x {}^{c} }{x {}^{a} } ) {}^{c + a}  \\  = x{}^{(a - b)(a + b)}  \times x{}^{(b - c)(b + c)}  \times x{}^{(c - a)(c + a)}  \\  = x {}^{(a {}^{2} - b {}^{2})  }  \times x {}^{(b {}^{2} - c {}^{2} ) }  \times x {}^{(c {}^{2} - a {}^{2})  }  \\  = x {}^{a {}^{2} - b {}^{2}  + b {}^{2} - c {}^{2} + c {}^{2}   - a {}^{2}   }  \\   \\ all \: power \: will \: cancel \: out. \: we \: get \\  = x {}^{0}  \\  = 1

The value of the expression is 0.

NOTE:

some important formulas:

 \implies \: a {}^{x}  \times a {}^{y}  = a {}^{ x + y}  \\  \implies \: a {}^{x}  \div a {}^{y}  = a {}^{x - y}  \\ \implies \:  a {}^{(m) {}^{n} }  = a {}^{mn}

Similar questions