Math, asked by devikap1520, 4 months ago

Please explain with steps​

Attachments:

Answers

Answered by Dinosaurs1842
7

x =  \dfrac{1}{2 -  \dfrac{1}{2 -\dfrac{1}{2 - x} } }

In these types of sums, we have to go step by step from the bottom most denominator.

LCM = 2-x.

x =  \dfrac{1}{2 -  \dfrac{1}{ \dfrac{4 - 2x - 1}{2 - x} } }

x =  \dfrac{1}{2 - (1 \div  \dfrac{3 - 2x}{2 - x})}

x =  \dfrac{1}{2 - (1 \times  \dfrac{2 - x}{3 - 2x})}

x =  \dfrac{1}{2 -  \dfrac{2 - x}{3 - 2x} }

LCM = 3 - 2x

x =  \dfrac{1}{ \dfrac{6 - 4x - 2 + x}{3 - 2x} }

x = \dfrac{1}{\dfrac{4-3x}{3-2x} }

x = 1  \div  \dfrac{4 - 3x}{3 - 2x}

x =  \dfrac{3 - 2x}{4 - 3x}

By cross multiplication,

x(4-3x) = 3-2x

4x - 3x^{2} = 3 - 2x

By transposing 4x - 3x² to the RHS (Right Hand Side)

0 = 3 - 2x - 4x + 3x^{2}

0 = 3 - 6x + 3x^{2}

0 = 3x^{2}  - 6x + 3

By factorizing using splitting the middle term method,

0 = 3x^{2}  - 3x - 3x + 3

0 = 3x(x-1) - 3(x-1)

0 = (3x-3)(x-1)

Therefore,

0 = 3x - 3

0 + 3 = 3x

3 = 3x

\dfrac{3}{3} = x = 1

(or)

0 = x - 1

0  + 1 = x

1 = x

Verification :-

substituting x for 1,

1 = \dfrac{1}{2-\dfrac{1}{2-\dfrac{1}{2-1} } }

1 = \dfrac{1}{2-\dfrac{1}{2-\dfrac{1}{1} } }

1 = \dfrac{1}{2-\dfrac{1}{1} }

1 = \dfrac{1}{1}

LHS = RHS

Hence verified.

Similar questions