please fast answer guys
Attachments:
Answers
Answered by
9
Hi there,
Here's the answer:
°•°•°•°<><><>==<><><>°•°•°•°•°•°
First,
Points to Remember:
→ Density
=>
→ For BCC Lattice, z = 2
Here,
Z= No. of atoms present in the unit cell.
M= Molar Mass
a= edge length
= Avogardo constant= 6.022*10^(23).
°•°•°•°<><><>==<><><>°•°•°•°•°•°
Given,
a= 250 pm= 250*m
=> a= 250*cm
D= 7.2 g/cm³
Substitute values in M
∵ z=2 for BCC
∴ Molar mass = 33 grams
°•°•°•°<><><>==<><><>°•°•°•°•°•°
;)
Hope it helps
paris54:
hi
Answered by
4
Hi there,
Here's the answer:
°•°•°•°<><><>==<><><>°•°•°•°•°•°
First,
Points to Remember:
→ Density D=D= \frac{z*M}{N_{A} *a^{3} }NA∗a3z∗M
=> M=\frac{D*N_{A} *a^{3} }{z}M=zD∗NA∗a3
→ For BCC Lattice, z = 2
Here,
Z= No. of atoms present in the unit cell.
M= Molar Mass
a= edge length
N_{A}NA = Avogardo constant= 6.022*10^(23).
°•°•°•°<><><>==<><><>°•°•°•°•°•°
Given,
a= 250 pm= 250*10^{-12}10−12 m
=> a= 250*10^{-10}10−10 cm
D= 7.2 g/cm³
Substitute values in M
∵ z=2 for BCC
a^{3} = (250*10^{-12} )^{3}a3=(250∗10−12)3
=15625*10^{3}*10^{-30}=15625∗103∗10−30
M=\frac{D*N_{A} *a^{3} }{2}M=2D∗NA∗a3
M = \frac{7.2*6.023*10^{23}*15625*10^{3}*10^{-30}}{2}M=27.2∗6.023∗1023∗15625∗103∗10−30
∴ Molar mass = 33 grams
°•°•°•°<><><>==<><><>°•°•°•°•°•°
;)
Hope it helps
Here's the answer:
°•°•°•°<><><>==<><><>°•°•°•°•°•°
First,
Points to Remember:
→ Density D=D= \frac{z*M}{N_{A} *a^{3} }NA∗a3z∗M
=> M=\frac{D*N_{A} *a^{3} }{z}M=zD∗NA∗a3
→ For BCC Lattice, z = 2
Here,
Z= No. of atoms present in the unit cell.
M= Molar Mass
a= edge length
N_{A}NA = Avogardo constant= 6.022*10^(23).
°•°•°•°<><><>==<><><>°•°•°•°•°•°
Given,
a= 250 pm= 250*10^{-12}10−12 m
=> a= 250*10^{-10}10−10 cm
D= 7.2 g/cm³
Substitute values in M
∵ z=2 for BCC
a^{3} = (250*10^{-12} )^{3}a3=(250∗10−12)3
=15625*10^{3}*10^{-30}=15625∗103∗10−30
M=\frac{D*N_{A} *a^{3} }{2}M=2D∗NA∗a3
M = \frac{7.2*6.023*10^{23}*15625*10^{3}*10^{-30}}{2}M=27.2∗6.023∗1023∗15625∗103∗10−30
∴ Molar mass = 33 grams
°•°•°•°<><><>==<><><>°•°•°•°•°•°
;)
Hope it helps
Similar questions