Math, asked by cuteanjalikunjooz, 11 months ago

please find the answer​

Attachments:

Answers

Answered by shadowsabers03
0

\begin{aligned}&5^1\times 5^3\times 5^5\times \dots\dots\dots\ \times5^{2n-1}=(25)^{72}\\ \\ \implies\ \ &5^{1+3+5+ \dots\dots\dots\ +2n-1}=(5^2)^{72}\end{aligned}

Consider the exponent of 5 in the LHS here. It shows an arithmetic series here.

We apply  S_n=\dfrac{n}{2}[\ 2a+(n-1)d\ ].

Here,  a=1\quad;\quad d=3-1=2\quad\quad [\text{or coefficient of $n$ in $2n-1$.}]

So,

S_n=\dfrac{n}{2}[\ 2\times 1+(n-1)2\ ]\ =\ n[\ 1+n-1\ ]\ =\ n^2

Thus,

\begin{aligned}&5^{1+3+5+ \dots\dots\dots\ +2n-1}=(5^2)^{72}\\ \\ \implies\ \ &5^{(n^2)}=5^{144}\\ \\ \implies\ \ &n^2=144\quad\quad\implies\quad\quad n=\pm 12\end{aligned}

But since  n>0,\quad\quad n=\mathbf{12}

Similar questions