Math, asked by FRONTBOY, 10 hours ago

PLEASE FIND THE ANSWER OF THIS QUESTION ​

Attachments:

Answers

Answered by mathdude500
18

Given Question

Solve the inequality :-

\rm \: \dfrac{5}{x - 1} \geqslant 2 \:  \: (x \:  \ne \: 1)

 \red{\large\underline{\sf{Solution-}}}

Given inequality is

\rm \: \dfrac{5}{x - 1}  \geqslant 2

\rm \: \dfrac{5}{x - 1} - 2  \geqslant 0

\rm \: \dfrac{5 - 2(x - 1)}{x - 1}  \geqslant 0

\rm \: \dfrac{5 - 2x + 2}{x - 1}  \geqslant 0

\rm \: \dfrac{7 - 2x}{x - 1}  \geqslant 0

\rm \: \dfrac{ -(2x - 7)}{x - 1}  \geqslant 0

\rm \: \dfrac{2x - 7}{x - 1}  \leqslant 0

can be further rewritten as

\rm \: \dfrac{(2x - 7)(x - 1)}{(x - 1)^{2} }  \leqslant 0

\bf\implies \:(2x - 7)(x - 1) \leqslant 0

\bf\implies \:1  <  x \leqslant \dfrac{7}{2}

\bf\implies \:x \:  \in \: \bigg(1, \: \dfrac{7}{2}\bigg]

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

If a and b are two real positive numbers such that a < b then

\boxed{\tt{ (x - a)(x - b) &lt; 0 \:  \: \rm\implies \:a &lt; x &lt; b \: }} \\

\boxed{\tt{ (x - a)(x - b)  \leqslant  0 \:  \: \rm\implies \:a  \leqslant  x  \leqslant  b \: }} \\

\boxed{\tt{ (x - a)(x - b) &gt;  0 \:  \: \rm\implies \:x &lt; a \:  \: or \:  \: x &gt;  b \: }} \\

\boxed{\tt{ (x - a)(x - b) \geqslant 0 \:  \: \rm\implies \:x  \leqslant  a \:  \: or \:  \: x \geqslant  b \: }} \\

\boxed{\tt{  \frac{x - a}{x - b} &lt; 0 \:  \: \rm\implies \:a &lt; x &lt; b \: }} \\

\boxed{\tt{  \frac{x - a}{x - b} \leqslant 0 \:  \: \rm\implies \:a \leqslant x &lt; b \: }} \\

\boxed{\tt{ \frac{x - a}{x - b}  &gt;  0 \:  \: \rm\implies \:x &lt; a \:  \: or \:  \: x &gt;  b \: }} \\

\boxed{\tt{ \frac{x - a}{x - b} \geqslant  0 \:  \: \rm\implies \:x \leqslant a \:  \: or \:  \: x &gt; b \: }} \\

Similar questions