Physics, asked by srushtivpounikar, 9 months ago

Please give ans step wise

Attachments:

Answers

Answered by BrainlyPopularman
14

QUESTION :

  \bf \to \displaystyle \int \bf  \dfrac{1}{16 +  {x}^{2}}.dx  =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C  \:  \: then \:  \: find \:  \: (P+Q)

ANSWER :

GIVEN :

  \bf  \implies\displaystyle \int \bf  \dfrac{1}{16 +  {x}^{2}} .dx =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C

TO FIND :

• P + Q = ?

SOLUTION :

  \bf  \implies\displaystyle \int \bf  \dfrac{1}{16 +  {x}^{2}} .dx =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C

• We should write this as –

  \bf  \implies  \dfrac{1}{16} \displaystyle \int \bf  \dfrac{1}{1 + \left( \dfrac{{x}^{2}}{16} \right)}.dx  =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C

  \bf  \implies  \dfrac{1}{16} \displaystyle \int \bf  \dfrac{1}{1 + \left( \dfrac{{x}}{4} \right)^{2} } .dx =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C

• Put x/4 = t

  \bf  \implies \dfrac{dx}{4} = dt

  \bf  \implies dx=4dt

• So that –

  \bf  \implies  \dfrac{1}{16} \displaystyle \int \bf  \dfrac{4.dt}{1 + \left(t \right)^{2} }  =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C

  \bf  \implies  \dfrac{1}{4} \displaystyle \int \bf  \dfrac{dt}{1 + \left(t \right)^{2} }  =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C

• We know that –

  \bf  \implies \displaystyle \int \bf  \dfrac{dx}{1 + \left(x \right)^{2} }  =  { \tan }^{ - 1}  \left(x \right) + C

• So that –

  \bf  \implies  \dfrac{1}{4}  { \tan}^{ - 1}(t ) + C =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C

• Now replace 't' –

  \bf  \implies  \dfrac{1}{4}  { \tan}^{ - 1}\left( \dfrac{{x}}{4} \right) + C =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C

• Now compare –

  \bf  \implies \large{ \boxed{ \bf P = 4\:,\:Q = 4}}

▪︎ Hence –

  \bf  \implies  P +Q = 4 +4

  \bf  \implies \large{ \boxed{ \bf P +Q = 8}}

Answered by HarshitJaiswal2534
0

Explanation:

QUESTION :–

  \bf \to \displaystyle \int \bf  \dfrac{1}{16 +  {x}^{2}}.dx  =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C  \:  \: then \:  \: find \:  \: (P+Q)

ANSWER :–

GIVEN :–

  \bf  \implies\displaystyle \int \bf  \dfrac{1}{16 +  {x}^{2}} .dx =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C

TO FIND :–

• P + Q = ?

SOLUTION :–

  \bf  \implies\displaystyle \int \bf  \dfrac{1}{16 +  {x}^{2}} .dx =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C

• We should write this as –

  \bf  \implies  \dfrac{1}{16} \displaystyle \int \bf  \dfrac{1}{1 + \left( \dfrac{{x}^{2}}{16} \right)}.dx  =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C

  \bf  \implies  \dfrac{1}{16} \displaystyle \int \bf  \dfrac{1}{1 + \left( \dfrac{{x}}{4} \right)^{2} } .dx =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C

• Put x/4 = t –

  \bf  \implies \dfrac{dx}{4} = dt

  \bf  \implies dx=4dt

• So that –

  \bf  \implies  \dfrac{1}{16} \displaystyle \int \bf  \dfrac{4.dt}{1 + \left(t \right)^{2} }  =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C

  \bf  \implies  \dfrac{1}{4} \displaystyle \int \bf  \dfrac{dt}{1 + \left(t \right)^{2} }  =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C

• We know that –

  \bf  \implies \displaystyle \int \bf  \dfrac{dx}{1 + \left(x \right)^{2} }  =  { \tan }^{ - 1}  \left(x \right) + C

• So that –

  \bf  \implies  \dfrac{1}{4}  { \tan}^{ - 1}(t ) + C =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C

• Now replace 't' –

  \bf  \implies  \dfrac{1}{4}  { \tan}^{ - 1}\left( \dfrac{{x}}{4} \right) + C =  \dfrac{1}{P}  { \tan }^{ - 1}  \left( \dfrac{x}{Q}  \right) + C

• Now compare –

  \bf  \implies \large{ \boxed{ \bf P = 4\:,\:Q = 4}}

▪︎ Hence –

  \bf  \implies  P +Q = 4 +4

  \bf  \implies \large{ \boxed{ \bf P +Q = 8}}

Similar questions