Math, asked by dolly07singh, 1 month ago

please give explanation of this q with answer​

Attachments:

Answers

Answered by OtakuSama
35

Question:-

 \\ \sf{If \: x  = 3 + 2 \sqrt{2} , then \: the \: value of \:  {x}^{2}    -   \dfrac{1}{ {x}^{2} } \: is \: equal \: to  - }

Required Answer:-

Given:-

\sf{\rightarrow{x = 3 + 2 \sqrt{2}}}

To Find:-

\sf{\rightarrow{The \: value \: of \:  {x}^{2}   -  \dfrac{1}{ {x}^{2} }}}

Solution:-

We were given:-

\sf{x  = 3 + 2 \sqrt{2}}

Therefore,

 \sf{\dfrac{1}{x}  =  \dfrac{1}{3 + 2 \sqrt{2}}}

 \\ \sf{\implies{\dfrac{1}{x} =  \frac{1  \times 3 - 2 \sqrt{2} }{(3  +  2 \sqrt{2})(3 - 2 \sqrt{2})}}  }

 \\ \sf{\implies{ \dfrac{1}{x}  =  \dfrac{3 + 2 \sqrt{2} }{ {(3)}^{2} -  {(2 \sqrt{2}) }^{2}  }}}

 \\ \sf{\implies{ \dfrac{1}{x}  =  \dfrac{3 + 2 \sqrt{2} }{9 - 8}}}

 \\ \sf{\implies{ \dfrac{1}{x}  =  \bold{3 + 2 \sqrt{2}}}}

Hence,

 \\ \sf{x +  \dfrac{1}{x}  = 3 - 2 \sqrt{2}  + 3 + 2 \sqrt{2}}

 \\ \sf{\implies{x +  \dfrac{1}{x}  =\bold{ 6}}}\blue{ -  -  -  -  -  -  -   -  -  -  -  -  -  - (1)}

Again,

\sf{x  -  \dfrac{1}{x}  =3  +  2 \sqrt{2}  - (3 - 2 \sqrt{2})}

 \\ \sf{\implies{x -  \dfrac{1}{x}  = 3 + 2 \sqrt{2}  - 3 + 2 \sqrt{2}}}

 \\ \sf{\implies{x -  \dfrac{1}{x}  =\bold{ 4 \sqrt{2}}}}  \blue{ -  -  -  -  -  -  -   -  -  -  -  -  -  - (2)}

Now,

 \\ \sf{\bold{ {x}^{2}  -  \dfrac{1}{ {x}^{2}}}}

 \\ \sf{\implies{ {(x)}^{2}  -  \dfrac{1}{ {(x)}^{2}}} }

 \\ \sf{\implies{\big(x +  \dfrac{1}{x}\big)\big (x -   \dfrac{1}{x} \big)}}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{\rm{ {a}^{2} -  {b}^{2}   = (a + b)(a - b)}}

Substituting the values from equation 1 and 2:-

 \\ \sf{\implies{6\times 4 \sqrt{2}}}

\\\sf{\implies{\bold{\red{24 \sqrt{2}}}}}

 \\ \underline{\boxed{\rm{Hence, \: the \: value \: of \: {x}^{2}  -  \dfrac{1}{ {x}^{2} } \: is \: \bold{24 \sqrt{2}}}}}

Similar questions