Math, asked by sg272514, 2 months ago

please give its full solution it's very very urgent​

Attachments:

Answers

Answered by SweetestBitter
5

\begin{gathered}\large {\boxed{\sf{\mid{\overline {\underline {\star ANSWER ::}}}\mid}}}\end{gathered}

To Find :-

 \frac{ {2}^{n - 1}  +  {2}^{n} }{ {2}^{n + 2}  -  {2}^{n + 1} }  \\

Solution :-

TO KNOW :

 1. \: \boxed {\sf{ {a}^{m + n} =  {a}^{m} \times  {a}^{n}   }} \\ 2. \: \boxed {\sf{ {a}^{m  -  n} =  \frac{ {a}^{m} }{{a}^{n}}  }}

From the problem, using the formulae :

 \frac{ {2}^{n - 1}  +  {2}^{n} }{ {2}^{n + 2}  -  {2}^{n + 1} }  \\  \\  =   \frac{ {2}^{n}÷ {2}^{1}   +  {2}^{n} }{ {2}^{n} \times  {2}^{2}  -  {2}^{n} \times {2}^{1}  }  \\  \\   =  \frac{ {2}^{n} ( \frac{1}{2} + 1) }{ {2}^{n}( {2}^{2}  -  2 )} \\  \\ =  \frac{ \frac{3}{2} }{ 2 }   \\  \\  \star \:  \underline{\boxed {=  \frac{3}{4} }} \:  \star

@SweetestBitter

Similar questions