Math, asked by kutti10, 5 hours ago

please give me a valid answer

Attachments:

Answers

Answered by Anonymous
5

\sf lim_{x \rightarrow 0} \:  \dfrac{1 - cosx}{xsinx}\\ \\

  • If we do direct substitution then resultant value is in the form of 0/0

\sf lim_{x \rightarrow 0} \:  \dfrac{1 -cosx}{xsinx}\\ \\

  • Multiply by (1-cosx)/(1-cosx)

\sf lim_{x \rightarrow 0} \:  \dfrac{1 - cosx}{xsinx} \times  \dfrac{1 + cosx}{1 + cosx}\\ \\

\sf lim_{x \rightarrow 0} \:  \dfrac{1 - cos^{2} x}{xsinx} \times  \dfrac{1}{1 + cosx}\\ \\

  • Trigonometric identity = cos²x + sin²x = 1
  • 1 - cos²x = sin²x

\sf lim_{x \rightarrow 0} \:  \dfrac{sin^{2} x}{xsinx} \times  \dfrac{1}{1 + cosx}\\ \\

\sf lim_{x \rightarrow 0} \:  \dfrac{sin x \times  \cancel {sinx}}{x  \times  \cancel{sinx}} \times  \dfrac{1 }{1 + cosx}\\ \\

\sf lim_{x \rightarrow 0} \:  \dfrac{sin x}{x} \times  \dfrac{1 }{1 + cosx}\\ \\

  • sinx/x = 1
  • Substitute the value of x = 0

\sf lim_{x \rightarrow 0} \:  1\times  \dfrac{1 }{1 + cosx} =  \dfrac{1}{1 + 1}  =  \dfrac{1}{2}\\ \\

\qquad {\boxed{\bf lim_{x \rightarrow 0} \:  \dfrac{1 - cosx}{xsinx}=\dfrac{1}{2}}}

Answered by ItzShizuka50
37

Answer:

REQUIRED ANSWER:

 \sf{lim \: ˣ \rightarrow0 \frac{1 - cos \: x}{x \:sin \: x} }

 \sf{limˣ \rightarrow0 \frac{1 -  \cos \: x }{x \: sin \: x}  \times  \frac{1 + cos \: x}{1 + cos \: x} }

 \sf{limˣ \rightarrow0 \frac{1 -  {cos}^{2} }{x \: sin \: x }  \times  \frac{1}{1 + \: cos \: x} }

 \sf{limˣ \rightarrow0 \frac{ { \sin }^{2}x }{ \: x \: sin \: x}  \times  \frac{1}{1 + cos \: x} }

 \sf{limˣ \rightarrow0 \frac{sin \: x}{x}  \times  \frac{1}{1 + cos \: x}  }

 \sf{limˣ \rightarrow0 \: 1 \times \frac{1}{1 + cos \: x}  =  \frac{1}{1 + 1}   =  \frac{1}{2} }

 \red \bigstar\boxed{limˣ \rightarrow0 \:  \frac{1 - cosx}{xsinx} =  \frac{1}{2}  }

Similar questions