Math, asked by ganni8, 8 hours ago

please give me answer fast​

Attachments:

Answers

Answered by xSoyaibImtiazAhmedx
2

 \large \bold{ \sqrt[3]{1728} -  \sqrt[3]{216}  }

 =  \sqrt[3]{ {12}^{3} }  -  \sqrt[3]{ {6}^{3} }

 \bold{ = 12 ^{3 \times  \frac{1}{3} }  -  {6}^{3 \times  \frac{1}{3} } }

 = 12 - 6

 =   \color{blue}\bold{6}

Answered by Anonymous
50

Answer :-

6

Given to find the value of :-

 \sqrt[3]{1728}  -  \sqrt[3]{216}

Formulae to know :-

 \red{ \sqrt[n]{a}  = a {}^{ \dfrac{1}{n} }}

 \red{a {}^{m}  \times b {}^{m}  \times c {}^{m}  = (abc) {}^{m}}

 \red{(a {}^{m}) {}^{n}    = a {}^{m n}}

Solution:-

Firstly lets write the radicals in simplest form or by prime factorisation method we shall write them in product of prime factors .

\begin{gathered}\begin{array}{c | c} \underline2 &\underline{1728} \\ \underline2&\underline{864} \\ \underline2 &\underline{432}\\ \underline2&\underline{216} \\ \underline2&\underline{108}\\ \underline2&\underline{54}\\ \underline3&\underline{27} \\ \underline3&\underline{9}\\ \underline3&\underline3 \\ &1\end{array}\end{gathered}

So,

1728 = 2 × 2× 2 × 2 × 2 ×2 ×3 ×3 ×3

1728 = 2⁶ × 3³

1728 = 2³ × 2³ × 3³

\begin{gathered}\begin{array}{c | c}   \underline2&\underline{216} \\ \underline2&\underline{108}\\ \underline2&\underline{54}\\ \underline3&\underline{27} \\ \underline3&\underline{9}\\ \underline3&\underline3 \\ &1\end{array}\end{gathered}

216 = 2 ×2 × 2 × 3×3 ×3

216 = 2³ × 3³

i.e writing the powers with respect to 3 in order to cancel the radical

 \sqrt[3]{1728}  -  \sqrt[3]{216}

 = \sqrt[3]{2 {}^{3}  \times 2 {}^{3}  \times 3 {}^{3} }  -  \sqrt[3]{2 {}^{3} \times 3 {}^{3}  }

By using this formula

 \red{a {}^{m}  \times b {}^{m}  \times c {}^{m}  = (abc) {}^{m}}

 =  \sqrt[3]{(2 \times 2 \times 3) {}^{3} } -  \sqrt[3]{(2 \times 3) {}^{3} }

 =  \sqrt[3]{(12) {}^{3} }  -  \sqrt[3]{(6) {}^{3} }

By using this formula

 \red{ \sqrt[n]{a}  = a {}^{ \dfrac{1}{n} }}

 = (12 {}^{3} ) {}^{ \frac{1}{3} }  - (6 {}^{3})  {}^{ \frac{1}{3} }

By using this formula

 \red{(a {}^{m}) {}^{n}    = a {}^{m n}}

 = 12 {}^{3 \times  \frac{1}{3} }  - 6 {}^{3 \times  \frac{1}{3} }

 = 12 {}^{ \not3 \times  \frac{1}{ \not3} }  - 6 {}^{ \not3 \times  \frac{1}{ \not3} }

 = 12 - 6

 \red{= 6}

So,

 \red{\sqrt[3]{1728}  -  \sqrt[3]{216}=6}

Similar questions
Math, 7 months ago