Math, asked by rajsoni3, 1 year ago

please give me answer fast i give u hint u rationalize denominater

Attachments:

Answers

Answered by gaurav2013c
1

 \frac{ \sin( \alpha )  \tan( \alpha ) }{1 -  \cos( \alpha ) }  \\  \\  =  \frac{ \sin( \alpha ) \tan( \alpha )  }{1 -  \cos( \alpha ) }  \times  \frac{1 +  \cos(  \alpha  ) }{1 +  \cos( \alpha ) }  \\  \\  =  \frac{ \sin \alpha   \tan\alpha   (1 +  \cos \alpha )   }{1 -  { \cos }^{2} \alpha  }  \\  \\  =  \frac{ \sin \alpha    \times  \frac{ \sin \alpha  }{ \cos \alpha  }  ( 1 +  \cos \alpha)  }{ { \sin }^{2} \alpha  } \\  \\  =   \frac{  { \sin }^{2} \alpha  }{  {  { \sin}^{2}   \alpha }^{}  }  \times  \frac{1 +  \cos \alpha  }{ \cos \alpha }  \\  \\  =  \frac{1 +  \cos \alpha   }{ \cos\alpha  }  \\  \\   = \frac{  \cos\alpha   }{ \cos \alpha  }  +  \frac{1}{ \cos \alpha }  \\  \\  = 1 +  \sec \alpha

rajsoni3: thanks gaurab bhai
Similar questions