Math, asked by Anonymous, 2 months ago

please give me answer of maths question​ 5​

Attachments:

Answers

Answered by abhi569
5

Question: If tan^2 alpha = 1 + 2 tan^2 beta. Prove that 2sin^2 alpha = 1 + sin^2 beta

Answer:

tan²A = 1 + 2tan²B

Adding 1 to both sides :

=> 1 + tan²A = 1 + 1 + 2 tan²B

=> 1 + tan²A = 2(1 + tan²B)

=> sec²A = 2sec²B

=> (1/cos²A) = 2(1/cos²B)

=> cos²B = 2cos²A

=> 1 - sin²B = 2(1 - sin²A)

=> 1 - sin²B = 2 - 2sin²A

=> 2sin²A = 2 - 1 + sin²B

=> 2sin²A = 1 + sin²B

Proved using:

• 1 + tan²x = sec²x

• secx = 1/cosx => sec²x = 1/cos²x

• cos²x = 1 - sin²x

*alpha is written as A and beta as B.

Answered by WildCat7083
6

 \sf \: { \red{to \: prove}} \\  \sf \: tan² \: A = 1 + 2tan² \: B  \\  \\  \sf \: { \red{proof}} \\  \\  \sf \: Adding \:  1 \:  to  \: both  \: sides : \\  \sf \: 1 + tan²A = 1  + 2 tan²B  \\ \\   \sf \: 1 + tan²A = 2(1 + tan²B)   \\ \\  \sf \:  sec²A = 2sec²B  \\   \\ \sf \ ( \frac{1}{cos²A} ) = 2( \frac{1}{cos²B} ) \\   \\  \sf \: cos²B = 2cos²A  \\ \\   \sf \: 1 - sin²B = 2(1 - sin²A)   \\ \\  \sf \: 1 - sin²B = 2 - 2sin²A  \\  \\  \sf \: 2sin²A = 2 - 1 + sin²B  \\  \\  \sf \: 2sin²A = 1 + sin²B \\  \\

_____________________________

 \sf \: @WildCat7083

Similar questions