Math, asked by ramesh124, 1 year ago

Please give me answer with explanation

Attachments:

Answers

Answered by alka1521
1
you have to remember all the trigonometrical functions
Attachments:

ramesh124: cam you answer 2
alka1521: naah i am somewhere confused in this question
Answered by Anonymous
3

\underline{\underline{\mathfrak{\Large{Solution: }}}}




\underline{\textsf{\large{4.}}}


\underline {\textsf{To Prove !}} \\ \\ \sf \implies cosec \: \theta \sqrt{1 \: - \: cos^2 \theta} \: = \: 1


<br />\textsf{Let,} \\ \\ \sf \implies cosec \: \theta \sqrt{1 \: - \: cos^2 \theta} \: = \: k  \\  \\  \sf \implies cosec  \: \theta \sqrt{ {sin}^{2} \theta \:  +  \:   \cancel{{cos}^{2}   \theta }\:  -  \: \cancel{  {cos}^{2}  \theta} } \:  =  \: k \\  \\  \sf \implies cosec \:  \theta \:  \times  \: sin \:  \theta \:  =  \: k \\  \\  \sf \implies  \frac{1}{ \cancel{sin \:  \theta}}  \:  \times  \:  \cancel{sin \:  \theta} \:  =  \: k \\  \\  \sf \:  \:  \therefore \:  \:  \:k  \: \:  =  \: 1 \\  \\ \underline{\textsf{Proved !! }}


<br />\textsf{Trigonometric Identity used : } \\ \\ \sf \implies sin^2 \: \theta \: + \: cos^2 \: \theta \: = \: 1 \\ \\ \textsf{And,} \\ \\ \sf \implies cosec \: \theta \: = \: \dfrac{1}{sin \: \theta}<br />



\underline{\textsf{\large{5.}}}


\underline{\textsf{To Find : }} \\ \\ \sf  =  cot^2 \theta \: - \: \dfrac{1}{sin^2 \theta} \\ \\ \sf = cot^2 \theta \: - \: \dfrac{1}{sin^2 \theta} \\ \\ \sf = \dfrac{cos^2 \theta}{sin^2 \theta} \: - \: \dfrac{1}{sin^2 \theta} \quad \left\{ cot^2 \theta \: = \: \dfrac{cos^2 \theta}{sin^2 \theta} \right\}  \\  \\  \sf  =   \dfrac{ {cos}^{2} \theta\:  -  \: 1 }{ {sin}^{2}  \theta}  \\  \\  \sf =  \dfrac{ \cancel{ {cos}^{2} \theta} \:  -  \:  {sin}^{2}   \theta \:  -  \: \cancel{  {cos}^{2}  \theta}}{ {sin}^{2} \theta }  \quad \left \{  {sin}^{2}  \theta \:  +  \:  {cos}^{2}  \theta \:  =  \: 1 \right \} \\  \\  \sf  =   \dfrac{  -   \cancel{{sin}^{2}} \theta }{  \cancel{{sin}^{2}   \theta}} \\  \\   \sf =  - 1



\underline{\textsf{Another Method : }} \\ \\ \sf = cot^2 \theta \: - \: \dfrac{1}{sin^2\theta } \\ \\ \sf = cot^2 \theta \: - \: cosec^2 \theta \quad \left\{ cosec^2 \theta \: = \: \dfrac{1}{sin^2 \theta} \right\} \\ \\ \sf = -( cosec^2 \theta \: - \: cot^2 \theta) \\ \\ \sf = -1  \quad \left\{cosec^2 \theta \: - \: cot^2 \theta \: = \: 1 \right\}

Anonymous: I think gives Simple answer is better to Saving time.
Anonymous: by the way, Fabulous Answer :) ✡✡✡
Similar questions