Math, asked by 99000777, 1 year ago

please give me its solution

Attachments:

Answers

Answered by adityasinghyadav77
6
the roots of eq.

x^2 +2x - 143 = 0

x^2 + 13x - 11x - 143

x(x + 13) - 11(x + 13)

(x - 11) (x+ 13)

are two root

and sum of sq.

(x-11)^2 + (x+13)^2
x^2 + 121 -22x + x^2 +169 -26x
2x^2 -48x + 290
Answered by Anonymous
96
 \textsf{ \underline{ \underline{First step :}}}

Finding the roots of the equation –

 \: \: \: \: \: \: \: {\texttt{x}}^{2} + 2\texttt{x} - 143 = 0 \\ \\ \rightarrow \: {\text{x}}^{2} + (13 - 11)\text{x} - 143 = 0 \\ \\ \rightarrow \: {\text{x}}^{2} + 13\text{x} - 11\text{x} - 143 = 0 \\ \\ \rightarrow \: \text{x}(\text{x} + 13) - 11(\text{x} + 13) = 0 \\ \\ \rightarrow \: (\text{x} + 13)(\text{x} - 11)

So, the roots of the equation [ x² + 2x –143 = 0 ] is [( x + 13 )( x – 11) ]

 \textsf{ \underline{ \underline{Second step :}}}

The Sum of the squares of ( x + 13 ) and ( x – 11)

 \: \: \: \: \: \: ({\text{x} + 13})^{2} + ( {\text{x} - 11})^{2} \\ \\ \rightarrow \: ( {\text{x}}^{2} + {13}^{2} + 2 \times 13 \times \text{x}) + ({\text{x}}^{2} + {11}^{2} - 2 \times 11 \times \text{x}) \\ \\ \rightarrow \: {\text{x}}^{2} + 169 + 26{\text{x}} \: + {\text{x}}^{2} + 121 - 22{\text{x}} \\ \\ \rightarrow \: 2 {\text{x}}^{2} + 290 + 4{\text{x}}

 \boxed{2 {\text{x}}^{2} + 4{\text{x}} + 290 }

Anonymous: u have blocked me lol
kingArsh07: how to inbox now
kingArsh07: and solutions
sasanka14333: hii riya
Anonymous: sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry
Similar questions