Math, asked by itzjkisok, 23 hours ago

Please give me the solution of this question.​

Attachments:

Answers

Answered by loganlevi2004
10

Answer:

What is known: Principal, Time Period, and Rate of Interest

What is unknown: Amount and Compound Interest (C.I.)

Reasoning:

A = P[1 + (r/100)]n

P = ₹ 10,000

n =

1

1

2

years

R = 10% p.a. compounded annually and half-yearly

where , A = Amount, P = Principal, n = Time period and R = Rate percent

For calculation of C.I. compounded half-yearly, we will take the Interest rate as 5% and n = 3

A = P[1 + (r/100)]n

A = 10000[1 + (5/100)]3

A = 10000[1 + (1/20)]3

A = 10000 × (21/20)3

A = 10000 × (21/20) × (21/20) × (21/20)

A = 10000 × (9261/8000)

A = 5 × (9261/4)

A = 11576.25

Interest earned at 10% p.a. compounded half-yearly = A - P

= ₹ 11576.25 - ₹ 10000 = ₹ 1576.25

Now, let's find the interest when compounded annually at the same rate of interest.

Hence, for 1 year R = 10% and n = 1

A = P[1 + (r/100)]n

A = 10000[1 + (10/100)]1

A = 10000[1 + (1/10)]

A = 10000 × (11/10)

A = 11000

Now, for the remaining 1/2 year P = 11000, R = 5%

A = P[1 + (r/100)]n

A = 11000[1 + (5/100)]

A = 11000[(105/100)]

A = 11000 × 1.05

A = 11550

Thus, amount at the end of

1

1

2

when compounded annually = ₹ 11550

Thus, compound interest = ₹ 11550 - ₹ 10000 = ₹ 1550

Therefore, the interest will be less when compounded annually at the same rate.

Answered by sandhyamanojarmy2011
6

Answer:

A = P[1 + (r/100)]n

P = ₹ 10,000

n =

1

1

2

years

R = 10% p.a. compounded annually and half-yearly

where , A = Amount, P = Principal, n = Time period and R = Rate percent

For calculation of C.I. compounded half-yearly, we will take the Interest rate as 5% and n = 3

A = P[1 + (r/100)]n

A = 10000[1 + (5/100)]3

A = 10000[1 + (1/20)]3

A = 10000 × (21/20)3

A = 10000 × (21/20) × (21/20) × (21/20)

A = 10000 × (9261/8000)

A = 5 × (9261/4)

A = 11576.25

Interest earned at 10% p.a. compounded half-yearly = A - P

= ₹ 11576.25 - ₹ 10000 = ₹ 1576.25

Now, let's find the interest when compounded annually at the same rate of interest.

Hence, for 1 year R = 10% and n = 1

A = P[1 + (r/100)]n

A = 10000[1 + (10/100)]1

A = 10000[1 + (1/10)]

A = 10000 × (11/10)

A = 11000

Now, for the remaining 1/2 year P = 11000, R = 5%

A = P[1 + (r/100)]n

A = 11000[1 + (5/100)]

A = 11000[(105/100)]

A = 11000 × 1.05

A = 11550

Thus, amount at the end of

1

1

2

when compounded annually = ₹ 11550

Thus, compound interest = ₹ 11550 - ₹ 10000 = ₹ 1550

Therefore, the interest will be less when compounded annually at the same rate.

Similar questions