Math, asked by chandu987, 11 months ago

please give solution as fast as possible with solution without giving nonsense ideas ​

Attachments:

Answers

Answered by Tomboyish44
1

Question:

\sf Evaluate: \dfrac{sin^2 \ 63^\circ + sin^2 \ 27^\circ}{cos^2 \ 17^\circ + cos^2 \ 73^\circ}

Solution:

We know that,

90° - 63° = 27°

90° - 27° = 63°

90° - 17° = 73°

90° - 73° = 17°

Also,

sinθ = cos(90° - θ)

cosθ = sin(90° - θ)

\Longrightarrow \ \sf \dfrac{sin^2 \ 63^\circ + sin^2 \ 27^\circ}{cos^2 \ 17^\circ + cos^2 \ 73^\circ}

\Longrightarrow \ \sf \dfrac{sin^2(90^\circ - 27^\circ) + sin^2 \ 27^\circ}{cos^2(90^\circ - 73^\circ) + cos^2 \ 73^\circ}

Using sin(90° - θ) = cosθ and cos(90° - θ) = sinθ we get,

\Longrightarrow \ \sf \dfrac{cos^2 \ 27^\circ + sin^2 \ 27^\circ}{sin^2 \ 73^\circ + cos^2 \ 73^\circ}

We know that sin²θ + cos²θ = 1

Applying it above we get,

\Longrightarrow \ \sf \dfrac{1}{1}

\Longrightarrow \ \sf 1

Therefore,

\boxed{\sf \dfrac{sin^2 \ 63^\circ + sin^2 \ 27^\circ}{cos^2 \ 17^\circ + cos^2 \ 73^\circ} = 1}

Answered by Anonymous
0

Chandu r u there now???? hello hey.....h r u ??

r u okay?

Similar questions