Math, asked by tanu4400, 1 year ago

please give the answer fast

Attachments:

Answers

Answered by shashankavsthi
1

x = 2 +  \sqrt{3}  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{1}  \\  \\  {x}^{2}  =  {(2 +  \sqrt{3} )}^{2}  \\  = 4 + 3 + 4 \sqrt{3}  \\  \\  { (\frac{1}{x} )}^{2}  =  {(2 -  \sqrt{3)}) }^{2}  \\  = 4 + 3 - 4 \sqrt{3}  \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 4 + 3 - 4 \sqrt{3}  + 4 + 3 + 4 \sqrt{3}  \\  = 14ans.
Answered by kitty7926
2
Hey, this is the answer!!!!!

If x=2+root 3
then 1/x =2- root 3 (by rationalisation)
then (x+1x)^2=x^2+(1/x)^2+2*x*(1/x)
i.e (2+ root 3 + 2- root 3)^2=x^2+(1/x)^2+2
4^2-2 =x^2 +(1/x)^2
i.e 14 is the answer.

Hope that this ans will help u!!!!
Similar questions