Math, asked by yuvrajkumar6607, 1 month ago

Please give the answer with explanation as soon as possible . Spammer will be reported.​

Attachments:

Answers

Answered by anindyaadhikari13
5

\textsf{\large{\underline{Solution}:}}

We have to evaluate the logarithm.

Given That:

 \rm =  \log \bigg( \dfrac{ {a}^{3} {b}^{2} }{ {c}^{4} } \bigg) + \log \bigg( \dfrac{b {c}^{3} }{ {a}^{2} } \bigg) -  \log \bigg( \dfrac{a}{c} \bigg)

We know that:

 \rm: \longmapsto \log(x) +  \log(y) = \log(xy)

 \rm: \longmapsto \log(x) - \log(y) = \log \bigg( \dfrac{x}{y} \bigg)

Therefore, we get:

 \rm =  \log \bigg( \dfrac{ {a}^{3} {b}^{2} }{ {c}^{4} } \times \dfrac{b {c}^{3} }{ {a}^{2} } \bigg) -  \log \bigg( \dfrac{a}{c} \bigg)

 \rm =  \log \bigg( \dfrac{ {a}^{3 - 2} {b}^{2 + 1} }{ {c}^{4 - 3} } \bigg) -  \log \bigg( \dfrac{a}{c} \bigg)

 \rm =  \log \bigg( \dfrac{a{b}^{3} }{c} \bigg) -  \log \bigg( \dfrac{a}{c} \bigg)

 \rm =  \log \bigg( \dfrac{a{b}^{3} }{c} \div \dfrac{a}{c} \bigg)

 \rm =  \log \bigg( \dfrac{a{b}^{3} }{c}  \times  \dfrac{c}{a} \bigg)

 \rm =  \log( {b}^{3})

As we know that:

\rm: \longmapsto \log( {x}^{n}) = n \log(x)

Therefore, we get:

 \rm =  3\log(b)

Which is our required answer.

\textsf{\large{\underline{Learn More}:}}

 \rm 1. \:  \:  {a}^{n} = b \implies log_{a}(b)  = n

 \rm 2. \:  \: log_{a}(1)  = 0, \: a \neq0,1

 \rm 3. \:  \: log_{a}(a)  = 1, \: a \neq0,1

 \rm 4. \:  \: log_{a}(x)  = log_{a}(y) \implies x = y

 \rm 5. \:  \: log_{e}(x) =  ln(x)

 \rm6. \:  \:  log_{a}(x) + log_{a}(y) = log_{a}(xy)

 \rm7. \:  \:  log_{a}(x) - log_{a}(y) = log_{a} \bigg( \dfrac{x}{y} \bigg)

 \rm 8. \:  \: log_{a}( {x}^{n} ) =  n\log_{a}(x)

 \rm 9. \:  \:  log_{a}(m) =  \dfrac{ log_{b}(m) }{ log_{b}(a) },m > 0,b > 0,a \ne1,b \ne1

 \rm 10. \:  \: log_{a}(b) = \dfrac{1}{ log_{b}(a) }


anindyaadhikari13: Thanks for the Brainliest :)
Similar questions