Math, asked by devanshlodhamaowf2z6, 1 year ago

PLEASE GIVE THE ANSWER WITH THE SOLUTION...

Attachments:

Answers

Answered by Anonymous
3

Answer \:  \\  \\ Given \: Question \: Is \:  \:  \\  \\  log_{3}(4  \times  3 {}^{x}  - 1 )  = 2x  + 1 \\  \\  log_{3}(4  \times 3 {}^{x} - 1 )  =  log_{3}(3 {}^{(2x + 1)} )  \\  \\ 4 \times 3 {}^{x}  - 1 = 3 {}^{(2x + 1)}  \\  \\ 4 \times 3 {}^{x}   - 1= 3 {}^{2x}  \times 3 {}^{1}  \\  \\  \frac{3 {}^{x} }{3 {}^{2x}  \times 3 {}^{1} }  =  \frac{1}{3 {}^{2x}  \times 3 {}^{1} }  \\  \\ 3 {}^{( - x - 1)}  = 3 {}^{ - (2x + 1)}  \\  \\ now \: compare \: powers \: of \: 3 \: we \: have \\  \\ ( - x - 1) =  - (2x + 1) \\  \\  - x - 1 =  - 2x - 1 \\  \\  - x - 1 + 2x + 1 = 0 \\  \\ x = 0 \\  \\ therefore \:  \: x = 0 \\  \\ NOTE \:  \\  \\  log_{y}(y)  = 1 \\  \\  log(x {}^{n} )  = n log(x)  \\  \\  \frac{1}{x {}^{n} }  = x {}^{ - n}


devanshlodhamaowf2z6: THANKYOU SO MUCH FOR THE SOLUTION...
Similar questions