Please Give the correct solution of this answer.
Answers
Given:
To Find:
Value of cosθ.cosΦ
Solution:
We know that,
On squaring given equations, we get
On adding (1) and (2), we get
Also, given equations can be written as
On dividing (5) by (4), we get
Now,
From (6), we get
On adding (3) and (7), we get
Hence, the correct option is (D).
Solution:-
cos∅+cosø=a......i)
sin∅+sinø=b.,......ii)
sqaure both side
and then add them
cos^2∅+sin^2∅+cos^2ø+sin^2ø+2sin∅sinø+2cos∅cosø=a^2+b^2
2+2(sin∅sinø+cos∅cosø)=a^2+b^2
2+2{(1-cos^2∅)^1/2(1-cos^2ø)^1/2+cos∅cosø}=a^2+b^2
(1-cos^2∅)^1/2(1-cos^2ø)^1/2=(a^2+b^2-2)/2-cos∅cos∅
sqaure on both side
(1-cos^2∅)(1-cos^2ø)={(a^2+b^2-2)/2-cosøcos∅}^2
=>1-cos^2ø-cos^2∅+cos^2øcos^2∅
={(a^2+b^2-2)/2-cosøcos∅}^2
put cos∅cosø=x
=>1-(a^2-2x)+x^2={(a^2+b^2-2)/2-x}^2
=>1-a^2+2x+x^2={(a^2+b^2-2)^2}/4+x^2
-(a^2+b^2-2)x
=>(2+a^2+b^2-2)x={(a^2+b^2-2)^2/4}
=>x=(a^2+b^2-4)^2/4(a^2+b^2)
as x=cos∅cosø
so
cosøcos∅=(a^2+b^2-2)^2/4(a^2+b^2)
cosøcos∅=(a^4+b^4+2a^2b^2-
4b^2-4a^2)/4(a^2+b^2)
cos∅cosø={(a^2+b^2)^2-4b^2}/4(a^2+b^2)
hence option d)