Math, asked by 1980seemamishra, 28 days ago

please give the solution of the above question

again saying don't spam and if you don't know anything about it stay away from this question​

Attachments:

Answers

Answered by archu040688
7

Answer:

Rs. 12

Step-by-step explanation:

Simple Interest:

P=Rs 4800 r=5%p.a t=2 years

∴SI=

100

Ptr

=Rs.

100

4800×2×5

=Rs 480

Compound interest:

Case I

P=Rs 4800 r=5%p.a. t=1 year

Interest =Rs.

100

4800×5×1

=Rs 240

∴A=Rs (4800+240)=Rs 5040

Case II

P=Rs 5040 r=5%p.a. t=1 year

Interest =Rs.

100

5040×5×1

=Rs 252.

∴A=Rs (5040+252)=Rs 5292.

∴ Compound Interest =Rs(5292−4800)=Rs 492

∴ Difference between compound Interest and Simple Interest =Rs (492−480)=Rs.12

HOPE IT HELPS

Answered by Anonymous
18

Answer:

Question :

  • Find the difference between the simple interest and compound interest on Rs.4800 for 2 years at 5% per annum, compound interest being reckoned annually.

\begin{gathered}\end{gathered}

Given :

  • Principle = Rs.4800
  • Time period = 2 years
  • Rate of Interest = 5% per annum

\begin{gathered}\end{gathered}

To Find :

  • Simple Interest
  • Amount
  • Compound Interest
  • Difference between the simple interest and compound interest

\begin{gathered}\end{gathered}

Using Formulas :

\longrightarrow\small{\underline{\boxed{\bf{ S.I = \dfrac{P \times R \times T}{100}}}}}

\longrightarrow\small{\underline{\boxed{\bf{A= P\bigg(1 + \dfrac{ {R}}{100} \bigg)^{T}}}}}

\longrightarrow\small{\underline{\boxed{\bf{{C.I=A- P}}}}}

\longrightarrow\small{\underline{\boxed{\bf{Difference = C.I - S.I}}}}

⚘ Where :-

  • ➛ S.I = Simple Interest
  • ➛ A = Amount
  • ➛ P = Principle
  • ➛ R = Rate
  • ➛ T = Time
  • ➛ C.I = Compound Interest

\begin{gathered}\end{gathered}

Solution :

⚘ Finding the simple interest by substituting the values in the formula :-

\dashrightarrow\small{\sf{ S.I = \dfrac{P \times R \times T}{100}}}

\dashrightarrow\small{\sf{ S.I = \dfrac{4800 \times 5 \times 2}{100}}}

\dashrightarrow\small{\sf{ S.I = \dfrac{4800 \times 10}{100}}}

\dashrightarrow\small{\sf{ S.I = \dfrac{48000}{100}}}

\dashrightarrow\small{\sf{ S.I = \cancel{\dfrac{48000}{100}}}}

\dashrightarrow\small{\sf{S.I = Rs.480}}

\longrightarrow\small{\underline{\boxed{\sf{\pink{S.I = Rs.480}}}}}

∴ The simple interest is Rs.480.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

⚘ Finding amount by substituting the values in the formula :-

\dashrightarrow\small{\sf{A= P\bigg(1 + \dfrac{ {R}}{100} \bigg)^{T}}}

\dashrightarrow\small{\sf{A= 4800\bigg(1 + \dfrac{{5}}{100} \bigg)^{2}}}

\dashrightarrow\small{\sf{A= 4800\bigg(\dfrac{(1 \times 100) + (5 \times 1)}{100} \bigg)^{2}}}

\dashrightarrow\small{\sf{A= 4800\bigg(\dfrac{100+5}{100} \bigg)^{2}}}

\dashrightarrow\small{\sf{A= 4800\bigg(\dfrac{105}{100} \bigg)^{2}}}

\dashrightarrow\small{\sf{A= 4800\bigg( \cancel{\dfrac{105}{100}} \bigg)^{2}}}

\dashrightarrow\small{\sf{A= 4800\bigg( {\dfrac{21}{20}} \bigg)^{2}}}

\dashrightarrow\small{\sf{A= 4800\bigg( {\dfrac{21}{20}} \times  \dfrac{21}{20} \bigg)}}

\dashrightarrow\small{\sf{A= 4800\bigg( {\dfrac{21 \times 21}{20 \times 20}} \bigg)}}

\dashrightarrow\small{\sf{A= 4800\bigg( {\dfrac{441}{400}} \bigg)}}

\dashrightarrow\small{\sf{A= 4800 \times {\dfrac{441}{400}}}}

\dashrightarrow\small{\sf{A= \cancel{4800} \times {\dfrac{441}{\cancel{400}}}}}

\dashrightarrow\small{\sf{A=12 \times 441}}

\dashrightarrow\small{\sf{A=Rs.5292}}

\longrightarrow\small{\underline{\boxed{\sf{\pink{Amount=Rs.5292}}}}}

∴ The amount is Rs.5292.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

⚘ Finding compound interest by substituting the values in the formula :-

\dashrightarrow{\small{\sf{{C.I=A- P}}}}

\dashrightarrow{\small{\sf{{C.I=5292- 4800}}}}

\dashrightarrow{\small{\sf{{C.I=492}}}}

\longrightarrow{\small{\underline{\boxed{\sf{\pink{{C.I=492}}}}}}}

∴ The compound interest is Rs.492.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

⚘ Now, finding the difference between Compound interest and Simple interest :-

\dashrightarrow\small{\sf{Difference = C.I - S.I}}

\dashrightarrow\small{\sf{Difference = 492- 480}}

\dashrightarrow\small{\sf{Difference = Rs.12}}

\longrightarrow\small{\underline{\boxed{\sf{\pink{Difference = Rs.12}}}}}

∴ The difference between simple interest and compound interest is Rs.12.

━┅━┅━┅━┅━┅━┅━┅━┅━┅━

Learn More :

\dashrightarrow{\small{\underline{\boxed{\sf{\purple{Simple \: Interest = \dfrac{P \times R \times T}{100}}}}}}}

\dashrightarrow\small{\underline{\boxed{\sf{\purple{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\dashrightarrow\small{\underline{\boxed{\sf{\purple{Amount = Principle + Interest}}}}}

\dashrightarrow\small{\underline{\boxed{\sf{\purple{ Principle=Amount - Interest }}}}}

\dashrightarrow\small{\underline{\boxed{\sf{\purple{Principle = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\dashrightarrow\small{\underline{\boxed{\sf{\purple{Principle = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

{\underline{\rule{220pt}{2.5pt}}}

Similar questions