Math, asked by pratishtha4121, 6 hours ago

please guys answer this question​

Attachments:

Answers

Answered by yogeshbhuyal7
1

Solution:-

x

3

+3x

2

+4x−11=0

Here,

A=1,B=3,C=4,D=−11

Given that a,b,c are the roots of the above equation.

Therefore,

Sum of roots =

A

−B

⇒a+b+c=

1

−3

=−3

Sum of the product of roots =

A

C

⇒ab+bc+ca=

1

4

=4

Product of roots =

A

−D

⇒abc=

1

−(−11)

=11

x

3

+rx

2

+sx+t=0

Here,

A=1,B=r,C=s,D=t

Given that (a+b),(b+c),(c+a) are the roots of the above equation.

Therefore,

Sum of the roots =

A

−B

⇒(a+b)+(b+c)+(c+a)=

1

−r

=−r

Sum of the product of roots =

A

C

⇒(a+b)(b+c)+(b+c)(c+a)+(c+a)(a+b)=

1

s

=s

Product of the roots =

A

−D

⇒(a+b)(b+c)(c+a)=

1

−t

=−t

Now, solving for 't', we have

t=−[(a+b)(b+c)(c+a)]

⇒t=−[ab+ac+b

2

+bc)(c+a]

⇒t=−[a

2

b+a

2

c+2abc+ab

2

+b

2

c+ac

2

+bc

2

]

⇒t=−[a

2

b+a

2

c+abc+abc+ab

2

+b

2

c+ac

2

+bc

2

+abc−abc]

⇒t=−[a(ab+ac+bc)+b(ac+ab+bc)+c(ac+bc+ab)−abc]

⇒t=−[(ab+bc+ca)(a+b+c)−abc]

From eq

n

(1),(2)&(3), we have

t=−[4×(−3)−11]

t=−(−12−11)=23

Hence the value of 't' is 23.

Similar questions