Math, asked by Zroy, 1 year ago

please guys help ...............

Attachments:

Answers

Answered by hukam0685
2

3 {x}^{2}  + 5x + 7 \\  \alpha  +  \beta =  \frac{ - 5}{3}   \\  \alpha  \beta  =  \frac{7}{3}  \\  { \alpha }^{3}  +  { \beta }^{3}  = ( \alpha  +  \beta )( { \alpha }^{2}  +  { \beta }^{2}  -  \alpha  \beta ) \\  = ( \alpha +   \beta )( { \alpha }^{2}   + { \beta }^{2}  + 2 \alpha  \beta  - 2 \alpha  \beta  -  \alpha  \beta ) \\  =  (\alpha  +  \beta)(( { \alpha  +  \beta )}^{2}   - 3 \alpha  \beta ) \\  = ( \frac{ - 5}{3} )( ({ \frac{ - 5}{3} )}^{2}  - 3( \frac{7}{3} )) \\  =  \frac{ - 5}{3} ( \frac{25}{9}  - 7) \\  =  \frac{ - 5}{3} ( \frac{25 - 63}{9} ) \\  =  \frac{ - 5}{3} (  \frac{ - 38}{9} ) \\  =  \frac{190}{27}
 \frac{1}{ { \alpha }^{2} }  +  \frac{1}{ { \beta }^{2} }  =  \frac{ { \alpha }^{2}  +  { \beta }^{2} }{ { \alpha }^{2}  { \beta }^{2} }  \\  =  \frac{ { \alpha }^{2}  +  { \beta }^{2}  + 2 \alpha  \beta  - 2 \alpha  \beta }{ { \alpha }^{2}  { \beta }^{2} }  \\  =  \frac{( { \alpha  +  \beta )}^{2}  - 2 \alpha  \beta }{ { \alpha }^{2} { \beta }^{2}  }  \\  =  \frac{ \frac{25}{9}  -  \frac{14}{3} }{ \frac{49}{9} }  \\  =  \frac{ \frac{25 - 42}{9} }{ \frac{49}{9} }  \\  =  \frac{ - 17}{49}
 \frac{ \alpha }{ \beta }  +  \frac{ \beta }{ \alpha }  + 5 \alpha  \beta  \\  =  \frac{ { \alpha }^{2} +  { \beta }^{2}   + 5 { \alpha }^{2} { \beta }^{2}  }{ \alpha  \beta }  \\  =  \frac{( { \alpha  +  \beta )}^{2}  - 2 \alpha  \beta  + 5 {( \alpha  \beta )}^{2} }{ \alpha  \beta }  \\  =  \frac{ \frac{25}{9}  -  \frac{14}{3}  +  \frac{245}{9} }{ \frac{7}{3} }  \\  =  \frac{ \frac{25 - 42 + 245}{9} }{ \frac{7}{3} }  \\  =  \frac{228 \times 3}{9 \times 7}  \\  =  \frac{228}{27}  =  \frac{76}{9}


Zroy: thank you so much
hukam0685: your welcome
Similar questions