Math, asked by lingarajpradhan703, 1 year ago

please help.................... ​

Attachments:

Answers

Answered by Anonymous
27

SOLUTION:-

Given:

If alpha & beta are the zeroes of polynomial are x² +4x+3.

To find:

The polynomial whose zeroes are 1+alpha/beta & 1+beta/alpha.

Explanation:

We have,

Let p(x)= x² +4x +3

&

alpha & beta are the zeroes of p(x).

Sum of the zeroes:

 \alpha  +  \beta  =  \frac{ - b}{a} =  \frac{coefficient \: of \: x}{coefficient \: of \:  {x}^{2} }

Therefore,

Compare with the given quadratic polynomial Ax² + Bx +C.

  • A= 1
  • B= 4
  • C= 3

 \alpha  +  \beta  =  \frac{ - 4}{1}  \\  \\  \alpha  +  \beta  =  - 4

&

Product of the zeroes:

 \alpha  \beta  =  \frac{c}{a}  =  \frac{constant \: term }{coefficient \: of \: x}   \\  \\  \alpha  \beta  =  \frac{3}{1}  \\  \\  \alpha  \beta  = 3

So,

We have zeroes of required quadratic polynomial.

1 +  \frac{ \alpha }{ \beta }  \:  \: and \:  \: 1 +  \frac{ \beta }{ \alpha }

Sum of the roots of required polynomial:

(1 +  \frac{  \alpha }{ \beta } ) + (1 +  \frac{ \beta }{ \alpha } ) \\  \\ Sum = 2 +  \frac{ { \alpha }^{2}  +  { \beta }^{2} }{ \alpha  \beta }  \\  \\ Sum = 2 +  \frac{( \alpha  +  \beta ) {}^{2}   - 2 \alpha  \beta }{ \alpha  \beta }  \\  \\ Sum = 2 +  \frac{( - 4) {}^{2} - 2 \times 3 }{3}  \\  \\ Sum = 2 +  \frac{16 - 6}{3}  \\  \\ Sum = 2 +  \frac{10}{3}  \\  \\ Sum =  \frac{6 + 10}{3}  \\  \\ Sum =  \frac{16}{3}

&

Product of roots of required polynomial:

(1 +  \frac{ \alpha }{ \beta } )(1 +  \frac{ \beta }{ \alpha } ) \\  \\ Product = 2 +  \frac{ { \alpha }^{2}  +  { \beta }^{2} }{ \alpha  \beta } \\  \\ Product = 2 +  \frac{( \alpha  +  \beta ) {}^{2}  - 2 \alpha  \beta }{ \alpha  \beta }   \\  \\ Product = 2 +  \frac{( - 4) {}^{2}  - 2 \times 3}{3}  \\  \\ Product = 2 +  \frac{16 - 6}{3}  \\  \\ p</p><p>Product = 2 +  \frac{10}{3}  \\  \\ Product =  \frac{6 + 10}{3}  \\  \\ Product =  \frac{16}{3}

Now, required polynomial are;

f(x)= k(x² - Sx + P)

[k is non-zero real number].

f(x)= k(x² - 16/3x + 16/3]

f(x)= k/3 [3x² -16x +16]

Taking k= 3,

f(x)= 3x² - 16x +16.

Similar questions