Math, asked by fhg4, 10 months ago

please help ..........................​

Attachments:

Answers

Answered by pranjaygupta
1

Step-by-step explanation:

cotA= 1/√3

A= 60°

substituting

1-(1/2)^2/2-(√3/2)^2

(3/4)/5/4

3/5

hope it helps u

mark as brainliest

Answered by anshpal629
0

Step-by-step explanation:

Given

 \cot( a)  =  \frac{1}{ \sqrt{3} }

as we know that

 \cot(a)  =  \frac{b}{p}  \\ therefore \: p =  x\sqrt{3}   \\ and \:  \: b = x \\  by \: pgt \:  \\  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \:  \: \:  \:  \:  \:=  {(x \sqrt{3} )}^{2}  +  {(x)}^{2}  \\  \:  \:  \:  \:  = 3 {x}^{2}  +  {x}^{2}  \\  \:  \:  \:  \:   {h}^{2} = 4 {x}^{2}  \\ h = 2x \\ as \: we \: know \: that \\  \sin(a)  =  \frac{p}{h}  =  \frac{ \sqrt{3} }{2}  \\ and \:  \cos(a)  =  \frac{b}{h}  =  \frac{1}{2}  \\ therefore \:  \\  \frac{1 -  { \cos(a) }^{2} }{2 -   { \sin(a) }^{2}  }  =  \frac{3}{5}

on \: taking \: lhs \\  =  \frac{1 -  { \cos(a) }^{2} }{2 -  \sin(a) }  \\  =  \frac{1 -  { (\frac{1}{2}) }^{2} }{2 -  {( \frac{ \sqrt{3} }{2} )}^{2} }

  = \frac{1 -  \frac{1}{4} }{2 -  \frac{3}{4} }  \\  =   \frac{ \frac{4 - 1}{4} }{ \frac{8 - 3}{4} }  \\  =  \frac{ \frac{3}{4} }{ \frac{5}{4} }  \\  =  \frac{3}{5}  \\ hence \: proved

Similar questions