Math, asked by farisshihab2006, 9 months ago

please help!!!!!!!!!

Attachments:

Answers

Answered by 007Boy
1

Answer:

Given :

Equation

( \frac{4}{9} ) {}^{4}  \times ( \frac{4}{9} ) {}^{ - 7}  = ( \frac{4}{9} ) {}^{2x - 1}

What to find out = value of x ?

Formulae used =

1) \:  \: a {}^{m}  \times a {}^{n}  = a {}^{m + n}  \\ 2) \:  \: a {}^{m}  = a {}^{n}  \\  = m = n

Solution :-

( \frac{4}{9} ) {}^{4}  \times ( \frac{4}{9} ) {}^{ - 7}  = ( \frac{4}{9} ) {}^{2x - 1}  \\  = ( \frac{4}{9} ) {}^{ - 3}  = ( \frac{4}{9} ) {}^{2x - 1}  \\  now \: compare \: the \: power \\  - 3 = 2x - 1 \\  = 2x - 1 + 3 = 0 \\  =  2x + 2 = 0 \\  =x=  \frac{ - 2}{2}  \\  = x =  - 1 \:  \: answer

Hence the value of X = - 1

Answered by InfiniteSoul
1

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Question}}}}}}}}

Find the value of x

\sf(\dfrac{4}{9})^4 \times(\dfrac{4}{9})^{-7} = (\dfrac{4}{9})^{2x-1}

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Solution}}}}}}}}

\sf\implies(\dfrac{4}{9})^4 \times(\dfrac{4}{9})^-7 = (\dfrac{4}{9})^{2x-1}

  •  x^a \times x^b = x^{a+b}

\sf\implies(\dfrac{4}{9})^{4+(-7)} = (\dfrac{4}{9})^{2x-1}

\sf\implies(\dfrac{4}{9})^{-3} = (\dfrac{4}{9})^{2x-1}

  • when bases are equal then power will also be equal

\sf\implies - 3 = 2x - 1

\sf\implies - 3 + 1= 2x

\sf\implies - 2 = 2x

\sf\implies x = \dfrac{-2}{2}

\sf\implies x = -1

{\bold{\blue{\boxed{\bf{x = -1 }}}}}

_________________❤

THANK YOU ❤

Similar questions