Math, asked by samuelbthunderkaiser, 9 months ago

please help answer fast​

Attachments:

Answers

Answered by eshreya396
3

Answer:

The answer to your question is option D

Attachments:
Answered by BrainlyPopularman
6

Question :

 \\ \bf \to If \:  \: y = log( \sec x +  \tan x) \:  \: then \:  \:  \dfrac{dy}{dx}  =  ?  \\

ANSWER :

GIVEN :

 \\ \bf \longrightarrow  \:\: y = log( \sec x +  \tan x) \\

TO FIND :

 \\ \bf \longrightarrow \dfrac{dy}{dx}  =  ?  \\

SOLUTION :

 \\ \bf \implies \:\: y = log( \sec x +  \tan x) \\

• Difference with respect to 'x' –

 \\ \bf \implies \dfrac{dy}{dx}  =  \left( \dfrac{1}{ \sec x +  \tan x}  \right)( \sec x. \tan x +  { \sec}^{2}x) \\

 \\ \bf \implies \dfrac{dy}{dx}  =  \left( \dfrac{1}{ \sec x +  \tan x}  \right)( \tan x +\sec x)( \sec x) \\

 \\ \bf \implies \dfrac{dy}{dx}  =  \left( \cancel \dfrac{ \sec x +  \tan x}{ \sec x +  \tan x}  \right)( \sec x) \\

 \\ \implies \large{ \boxed{ \bf \dfrac{dy}{dx}  =   \sec x }}\\

USED FORMULA :

 \\ \bf \:  (1) \: \dfrac{d \{ log(x) \}}{dx}  =  \dfrac{1}{x}  \\

 \\ \bf \:  (2) \: \dfrac{d \{  \sec x \}}{dx}  =  \sec(x). \tan(x)  \\

 \\ \bf \:  (3) \: \dfrac{d \{ \tan x \}}{dx}  =  \sec^{2} (x) \\

Similar questions