Math, asked by Anonymous, 6 months ago

please help ,answer it ​

Attachments:

Answers

Answered by Blossomfairy
8

Given :

  • a = 2 + √3

To find :

  • a² + 1/a²

According to the question,

Step 1 :

At first we will rationalise 1/a

 :  \implies \bf{ \dfrac{1}{a}  =  \dfrac{1 }{2 +  \sqrt{3}}  =  \dfrac{2 -  \sqrt{3} }{2 +  \sqrt{3} }  } \\  \\  : \implies \bf{ \dfrac{2 -  \sqrt{3} }{4 - 3} = 2 -  \sqrt{3} \:  \pink \bigstar  }

Step 2 :

We have to find the value of a + 1/a

 : \implies \bf{a +  \dfrac{1}{a} = 2 +  \sqrt{3}  + 2 -  \sqrt{3} }

:\implies \bf{4}  \:  \:\orange \bigstar

Step 3 :

Squaring on both the sides

  :  \implies \bf{ {a}^{2} +  \dfrac{1}{ {a}^{2} } =  {4}^{2}   } \\  \\  : \implies \bf{ {a}^{2}  +  \dfrac{1}{ {a}^{2}  }  + 2 \times a \times  \frac{1}{a}  = 16} \\  \\   : \implies \bf{ {a}^{2}  +  \dfrac{1}{ {a}^{2} } = 16 - 2 } \\  \\ { \boxed{\underline{\implies \bf{ {a}^{2} +  \dfrac{1}{ {a}^{2} }  = 14 }  \: \blue \bigstar}}}

So,the answer is 14.

____________________

 \:  \:  \:  \:  \:  \:  \: Formula used :  \:  \:  \:  \:  \:  \:  \:

  • (a + b)² = a² + 2ab + b²
Answered by AestheticSoul
6

Given -

  • a = 2 + \sf{\sqrt{3}}

To find -

  • \sf{a^2 + \dfrac{1}{a^2}}

Solution -

  • Firstly, find \bold{a^2}

  • Identity to be used -

\large\boxed{\sf{\green{(a + b)^2 = a^2 + b^2 + 2ab}}}

\bold{(2 + \sqrt{3})^2}

\bold{(2)^2 + (\sqrt{3})^2 + 2 \times 2 \times \sqrt{3}}

\bold{4 + 3 + 4\sqrt{3}}

\large\overbrace{\underbrace{\bold{a^2 = 11 + 4 \sqrt{3}}}}

  • Now, Find 1/a.

\bold{\dfrac{1}{2 + \sqrt{3}}}

  • Rationalize the denominator.

\bold{\dfrac{2 - \sqrt{3}}{2 + \sqrt{3} }\times 2 - \sqrt{3}}

\bold{\dfrac{2 - \sqrt{3}}{(2)^2 - (\sqrt{3})^2}}

\bold{\dfrac{2 - \sqrt{3}}{4 - 3}}

\bold{2 - \sqrt{3}}

\large\overbrace{\underbrace{\bold{ \dfrac{1}{a}  = 2 -  \sqrt{3}}}}

  • Now, find the square of 1/a

Identity to be used -

\large{\boxed{\sf{\green{(a - b)^2 = a^2 + b^2 - 2ab}}}}

\bold{2 - \sqrt{3}}

\bold{4 + 3 - 2 \times 2 \times \sqrt{3}}

\large\overbrace{\underbrace{\bold{ \dfrac{1}{a^{2} }  = 7 -  4\sqrt{3}}}}

  • Now, add \bold{a^2} and \sf{\dfrac{1}{a^2}}

\bold{7 + 4 \sqrt{3} + 7 - 4 \sqrt{3}}

\bold{7 + 4 \sqrt{3}~and~ - 4 \sqrt{3}} will get cancelled because they are having different signs.

\bold{7 + \cancel{4 \sqrt{3}} + 7 - \cancel{4 \sqrt{3}}}

\overbrace{\underbrace{\sf{\orange{a^2 + \dfrac{1}{a^2} = 14}}}}

Similar questions