Math, asked by shrutikasinha34, 3 days ago

please help guys ..

Attachments:

Answers

Answered by Unni007
2

(i)

\boxed{\sf{(2x^2 - 5y) (5x + 2y^2) ; [x = 2, y = -1]}}

Applying the values of "x" and "y" to the equation:

\sf{\implies [(2\times(2)^2)-(5\times (-1))]\times[(5\times 2)+ (2\times(-1)^2)] }

\sf{\implies [(2\times4)-(5\times -1)]\times[(5\times 2)+(2\times -1)] }

\sf{\implies [8-(-5)]\times[10+(-2)] }

\sf{\implies [8+5]\times[10-2] }

\sf{\implies 13\times8 }

\sf{\implies 104 }

Answer = 104

______________________________

(ii)

\boxed{\sf{(-\dfrac{1}{4}a+\dfrac{1}{5}b)(\dfrac{1}{4}a+\dfrac{1}{5}b};[a=8, b=5]}

Applying the values of "a" and "b" to the equation:

\sf{\implies [(-\dfrac{1}{4}\times8)+(\dfrac{1}{5}\times 5)]\times[(\dfrac{1}{4}\times 8)+(\dfrac{1}{5}\times 5)]}

\sf{\implies [(-\dfrac{8}{4})+(\dfrac{5}{5})]\times[(\dfrac{8}{4})+(\dfrac{5}{5})]}

\sf{\implies [-2+1]\times[2+1]}

\sf{\implies -1\times 3}

\sf{\implies -3}

Answer = -3

______________________________

(iii)

\boxed{\sf{(m+n)(2m-3n); [m=-2, n=0]}}

Applying the values of "m" and "n" to the equation:

\sf{\implies (-2+0)\times [(2\times -2)-(3\times 0)]}

\sf{\implies (-2+0)\times (-4-0)}

\sf{\implies -2\times-4}

\sf{\implies -8}

Answer = -8

______________________________

(iv)

\boxed{\sf{(0.1p+0.2q)(0.2m-0.1p); [p=10, q=5]}}

Applying the values of "p" and "q" to the equation:

\sf{\implies [(0.1\times 10)+(0.2\times 5)]\times[(0.2\times 5)-(0.1\times 10)]}

\sf{\implies [1+1]\times[1-1]}

\sf{\implies 2\times0}

\sf{\implies 0}

Answer = 0

Answered by LokiTheEmperor
0

Answer:

104,-3,-8,0

Step-by-step explanation:

104,-3,-8,0

Similar questions