Solve 2 cos 4 tita cos 2 tita
Answers
Answered by
0
Answer:
Taking LHS=2cos
2
θ−cos
4
θ+sin
4
θ=2cos
2
θ−(cos
4
θ−sin
4
θ)=2cos
2
θ−[(cos
2
θ)
2
−(sin
2
θ)
2
]
using identity (a
2
−b
2
)=(a+b)(a−b)
=cos
2
θ−[(cos
2
θ−sin
2
θ)(cos
2
θ+sin
2
θ)]=2cos
2
θ−[(cos
2
θ−sin
2
θ)(1)][∵cos
2
θ+sin
2
θ=1]
=2cos
2
θ−cos
2
θ+sin
2
θ=cos
2
θ+sin
2
θ=1=RHS
Similar questions