please help guys. want complete solution

Answers
Solution :-
Given
→ (x + 3)² + |x + 3| - 6 = 0
Let "x + 3" = t
→ t² + |t| - 6 = 0
Now when
t ≥ 0
→ t² + t - 6 = 0
→ t² + 3t - 2t - 6 = 0
→ t(t + 3) - 2(t + 3)
→ (t + 3)(t - 2)
→ t = -3 , 2
or as t ≥ 0
→ t = 2
t < 0
→ t² - t - 6 = 0
→ t² - 3t + 2t - 6 = 0
→ t(t - 3) + 2(t - 3)
→ (t - 3)(t + 2)
→ t = -2 , 3
or as t < 0
→ t = -2
So either
t = +2
or
t = -2
Then
→ ( x + 3) = 2
→ x = 2 - 3
→ x = -1
or
→ (x + 3) = -2
→ x = -2 - 3
→ x = -5
So
x = -5 , -1
Or sum of real roots
= -5 + (-1)
= -6
Given:-
→ (x + 3)² + |x + 3| - 6 = 0
Let x + 3 = t
→ t² + |t| - 6 = 0
__________________________________
Now when
t ≥ 0
→ t² + t - 6 = 0
→ t² + 3t - 2t - 6 = 0
→ t(t + 3) - 2(t + 3)
→ (t + 3)(t - 2)
→ t = -3 , 2
or as t ≥ 0
→ t = 2
Now when
t < 0
→ t² - t - 6 = 0
→ t² - 3t + 2t - 6 = 0
→ t(t - 3) + 2(t - 3)
→ (t - 3)(t + 2)
→ t = -2 , 3
or as t < 0
→ t = -2
So,
t = +2
or
t = -2
Then
→ ( x + 3) = 2
→ x = 2 - 3
→ x = -1
or
→ (x + 3) = -2
→ x = -2 - 3
→ x = -5
So
x = -5 , -1
Or sum of real roots
= -5 + (-1)
= -6