please help ... I have asked this question earlier too...but no correct answers....Q no. 4
Answers
first of all take out the factor theorem of all three values then when you get your answer substitute the value in all then you will get your answer
Given :
a (b² - c²) + b (c² - a²) + c (a² - b²)
Let f(a - b) = a (b² - c²) + b (c² - a²) + c (a² - b²)
⇒ f(a - b) =ab² - ac² + bc² - a²b + c (a + b)(a - b)
⇒ f(a - b) = ab² - a²b + bc²- ac² + c(a + b)(a - b)
⇒ f(a - b) = ab(b - a) + c²(b - a) + c(a + b)(a - b)
⇒ f(a - b) = (b - a)(ab + c² + c(a + b) )
When a - b is 0 , f(a - b) = 0 and hence a - b is a factor of the function ( using the Factor theorem ) .
Let f(b - c) = a (b² - c²) + b (c² - a²) + c (a² - b²)
⇒ f(b - c) = a(b + c)(b - c) + bc² - b²c - a²b + a²c
⇒ f(b - c) = a(b + c)(b - c) - bc(b - c) - a²(b - c)
⇒ f( b - c) = (b - c)( a(b + c) - bc - a² )
When b - c is 0 , f(b - c) = 0 and hence b - c is a factor of the function ( using the Factor theorem ) .
Let f(c - a) = a (b² - c²) + b (c² - a²) + c (a² - b²)
⇒ f(c - a) = ab² - ac² + b(c + a)(c - a) + a²c - b²c
⇒ f(c - a) = -b²(c - a) - ac(c - a) + bc(c + a)(c - a)
⇒ f(c - a) = (c - a)( -b²- ac + bc(c + a ) )
When c - a is 0 , f(c - a) = 0 and hence c - a is a factor of the function ( using the Factor theorem ) .