Math, asked by LostInJordan, 11 months ago

Please help me and do it in paper

If x=3+2√2 find the value of (√x-1/√x)^3

Answers

Answered by umiko28
4

Answer:

{\large{\overbrace{\underbrace{\purple{your  \: answer: - 128 \sqrt{2} }}}}}  \\  \\  \red♡ dear *----*  \\ </p><p></p><p>Step-by-step \:  explanation: \\ </p><p> \bf\ x = 3 -  2\sqrt{2} \\  \\  \bf\ </p><p> \implies :  \frac{1}{x} =  \frac{1}{3 - 2 \sqrt{2} }   \\ \\ \bf\  \implies:  \frac{1}{x}  =  \frac{1(3   + 2 \sqrt{2} )}{(3  - 2 \sqrt{2} )(3  +  2 \sqrt{2} )} \\  \\ \bf\  \implies:  \frac{1}{x}  =  \frac{3  +  2 \sqrt{2} }{ {3}^{2}  -  ({2 \sqrt{2} })^{2} } \\  \\ \bf\  \implies:  \frac{1}{x} =  \frac{3 + 2 \sqrt{2} }{9 - 8}  \\  \\ \bf\  \implies:  \frac{1}{x}  = 3 + 2 \sqrt{2}  \\  \\ \bf\  \implies:  {(x -  \frac{1}{x}) }^{3} ={((3 - 2 \sqrt{2}) -( 3  +  2 \sqrt{2}  ))}^{3}  \\  \\\bf\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies: -  {(4 \sqrt{2}) }^{3}  =   - 128\sqrt{2} \\  \\ \large\boxed{ \fcolorbox{red}{lime}{hope \: it \: help \: you}}

Answered by tahseen619
5

Answer:

8

Step-by-step explanation:

{\underline{{\text{Given}}}}

x = 3 + 2 \sqrt{2}

{\underline{{\text{To Find:}}}}

 \sqrt{x}  -  \dfrac{1}{ \sqrt{x} }

{\underline{{\text{Solution:}}}}

First we should find the value of  \sqrt{x} \text{and} \frac{1}{\sqrt{x}}

So,

x = 3 + 2 \sqrt{2}  \\  \\    = 2 + 2 \sqrt{2}  + 1 \\  \\  = ( \sqrt{2} ) 7^{2}  + 2. \sqrt{2} .1 +  {(1)}^{2}  \\  \\  = ( \sqrt{2}  + 1)^{2}  \\  \\  \therefore \sqrt{x}  =  \sqrt{2}  + 1

Again,

 \sqrt{x}  =   \sqrt{2}  + 1 \\  \\  \frac{1}{ \sqrt{x} }  =  \frac{1}{ \sqrt{2}  + 1}  \\  \\ [\text{Rationalizing the denominator}] \\  \\  =  \frac{( \sqrt{2} - 1) }{( \sqrt{2} + 1)( \sqrt{2}  - 1) }  \\  \\  \frac{ \sqrt{2} - 1 }{ ({ \sqrt{2} )}^{2} -  {(1)}^{2}  }  \\  \\  \frac{ \sqrt{2}  - 1}{2 - 1}  \\  \\  \frac{ \sqrt{2} - 1 }{1}  \\  \\  \therefore  \frac{1}{ \sqrt{x} }  =  \sqrt{2}  - 1

Now,

( \sqrt{x}  -   \frac{1}{ \sqrt{x} } ) {}^{3}  \\  \\ \{ ( \sqrt{2}   + 1 )  - ( \sqrt{2}  - 1)\} {}^{3}  \\  \\  {( \sqrt{2} + 1 -  \sqrt{2}  + 1) }^{3}   \\ \\  {(2)}^{3}  \\  \\ 8

Hence, The required answer is 8.

{\underline{{\text{Algebra Formula}}}}

 {(x + y)}^{2}={x}^{2}+{y}^{2}+2xy\\ \\{(x - y)}^{2}={x}^{2}+{y}^{2}-2xy\\ \\{(x+y)}^{2}= (x - y) {}^{2}+4xy\\ \\{(x-y)}^{2}=(x+y){}^{2}-4xy\\ \\ (x + y)^{2}+(x-y)^{2}=2( {x}^{2}+{y}^{2} )\\ \\(x+y)^{2}- (x-y) {}^{2}=4xy\\ \\ {(x + y)}^{3}={x}^{3}+{y}^{3}+ 3xy(x + y) \\ \\(x - y)^{3}={x}^{3}-{y}^{3}- 3xy(x - y)

Similar questions