Math, asked by prernamittal55, 2 months ago

Please Help Me !

Chapter-Quadratic Polynomial

Find a quadratic polynomial whose sum of zeros is 9 / 2 and product of zeros is 2 ​

Answers

Answered by MяMαgıcıαη
538

\LARGE\underline{\underline{\textsf{\textbf{Given\::-}}}}

\:

  • Sum of zeroes of quadratic polynomial (S) = 9/2

  • Product of zeroes of a quadratic polynomial (P) = 2

\:

\LARGE\underline{\underline{\textsf{\textbf{To\:Find\::-}}}}

\:

  • Quadratic polynomial ?

\:

\LARGE\underline{\underline{\textsf{\textbf{Solution\::-}}}}

\:

  • We clearly know that, for finding a quadratic polynomial with sum of zeroes = S, and product of zeroes = P, we use equation ::

  • \Large\boxed{\bf{p(x) = x^2 - Sx + P}}

\:

\underline{\sf{\bigstar\:Putting\:all\:known\:values\:::}}

\\ \quad \longrightarrow \quad \sf p(x) = x^2 - \bigg(\dfrac{9}{2}\bigg)x + 2

\:

\underline{\sf{\bigstar\:Multiplying\:the\:equation\:with\:2\:::}}

\\ \quad \longrightarrow \quad \sf p(x) = 2\Bigg(x^2 - \bigg(\dfrac{9}{2}\bigg)x + 2\Bigg)

\\ \quad \longrightarrow \quad \sf p(x) = \big(2\:\times\:x^2\big) - \bigg(\dfrac{9}{\cancel{2}}\:\times\:\cancel{2}\bigg)x + \big(2\:\times\:2\big)

\\ \quad \longrightarrow \quad \large \bf p(x) = 2x^2 - 9x + 4

\:

\therefore\:{\underline{\sf{Hence,\:required\:polynomial\:is\:\bf{2x^2 - 9x + 4}}}}

\:

\LARGE\underline{\underline{\textsf{\textbf{Explore\:More\::-}}}}

\:

  • If α and β are zeroes of the quadratic polynomial ax² + bx + c, then α + β = -b/a and αβ = c/a.

  • If α, β, γ are the zeroes of cubic polynomial ax³ + bx² + cx + d, then α + β + γ = -b/a, αβ + βγ + γα = c/a and αβγ = -d/a.

\:

\LARGE\underline{\underline{\textsf{\textbf{Learn\:more\:on\:brainly\::-}}}}

\:

\underline{\sf{\bigstar\:Question\:::}}

\:

Find zeroes of the quadratic polynomial 4x² - x - 5 and verify relationship between it's zeroes and coefficients.

\:

\underline{\sf{\bigstar\:Answer\:::}}

\:

https://brainly.in/question/42964609

\:

━━━━━━━━━━━━━━━━━━━━━━━━

Answered by TrustedAnswerer19
5

Answer:

Given,

Sum of zeroes of any polynomial is = 9/2

Product of zeroes of any polynomial is = 2

To find :

A quadratic polynomial

Method :

General formula of quadratic polynomial :

 \bf  {x}^{2}  - (sum \: of \: zeroes)x + product \: of \: zeroes

Here

 \odot \:  \sf \: sum \: of \: zeroes \: can \: be \: represented \: by \:  \\ ( \alpha  +  \beta ) \\  \\ and \\  \\   \odot\sf \: product \: of \: zeroes \: can \: be \: represented \: by \\  \: \alpha  \beta

So quadratic polynomial is :

 \bf \:  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta

So according to the question, we can write that,

 \alpha  +  \beta  =  \frac{9}{2}  \:  \:  \:  \: and \\  \alpha  \beta  = 2

So the quadratic polynomial is :

 \bf \:  {x}^{2}  -  ( \alpha  +  \beta )x +  \alpha  \beta  \\  =  \bf \:  {x}^{2}  -  \frac{9}{2} x + 2 \\

To learn more :

If α and β are zeroes of the quadratic polynomial ax² + bx + c, then

 \alpha  +  \beta  =  - \:  \frac{b}{a}  \\  \\  \alpha  \beta  =  \frac{c}{a}

Similar questions