Math, asked by itzselfiequeen25, 2 months ago

please help me

find solutions for 2 bit​

Attachments:

Answers

Answered by sharanyalanka7
5

Step-by-step explanation:

Question :-

The locus given by :-

16 {x}^{2}  - 24xy + 9 {y}^{2}  - 62x + 34y + 46 = 0

Solution :-

Comparing :-

16 {x}^{2}  - 24xy + 9 {y}^{2}  - 62x + 34y + 46 = 0

with , General form of Locus equation (S):-

a {x}^{2}  + b {y}^{2}  + 2hxy  + 2gx + 2fy + c = 0

\sf\implies

1) a = 16

2) b = 9

3)2h = -24 , h = -24/2 = -12

4) 2g = -62 , g = -62/2 = - 31

5) 2f = 34 , f = 34/2 = 17

6) c = 46

We know that :-

 \triangle \:  = abc + 2fgh - a {f}^{2}  - b {g}^{2}  - c {h}^{2}

= 16(9)(46) + 2(17)(-31)(-12) - 16(17)^2 - 9(-31)^2 - 46(-12)^2

= 144(46) + 34(372) - 16(289) - 9(961) - 46(144)

= 6624 + 12648 - 4624 - 8649 - 6624

= 12648−13273

= - 625

 \triangle \:  =  - 625

 \implies \:  \triangle \:  ≠0

h^2 = (-12)^2 = 144

ab = 16(9) = 144

 \implies \:  {h}^{2}  = ab

If \sf\triangle ≠ 0 \: and\: h^{2} = ab Then that line is "Parabola"

Similar questions