Math, asked by GUJJAR0096, 6 months ago

please help me friends​

Attachments:

Answers

Answered by pulakmath007
8

SOLUTION

TO DETERMINE

\displaystyle \lim_{x \to 0}  \:  \frac{ \sin ax + bx}{ax +  \sin bx}

EVALUATION

\displaystyle \lim_{x \to 0}  \:  \frac{ \sin ax + bx}{ax +  \sin bx}

 = \displaystyle \lim_{x \to 0}  \:  \frac{  \frac{ \sin ax\: }{x}  + b}{a+  \frac{ \sin bx\: }{x} }

( Dividing numerator and denominator both by x )

 = \displaystyle \lim_{x \to 0}  \:  \frac{ a  \: .\frac{ \sin ax\: }{ax}  + b}{a+ b \: . \:  \frac{ \sin bx\: }{bx} }

 = \displaystyle  \frac{ a  \:\displaystyle \lim_{x \to 0}  \: \frac{ \sin ax\: }{ax}  + b}{a+ b \: \displaystyle \lim_{x \to 0}  \:  \frac{ \sin bx\: }{bx} }

Let u = ax and v = bx

Then as x → 0 we have u → 0 and v → 0

Therefore

\displaystyle \lim_{x \to 0}  \:  \frac{ \sin ax + bx}{ax +  \sin bx}

 = \displaystyle  \frac{ a \:  . \:\displaystyle \lim_{u \to 0}  \: \frac{ \sin u\: }{u}  + b}{a+ b  \: .\: \displaystyle \lim_{v \to 0}  \:  \frac{ \sin v\: }{v} }

 = \displaystyle   \frac{(a \times 1) +b }{a + (b \times 1)}  \:   \:  \:  \bigg( \because \: \displaystyle \lim_{x \to 0}  \:  \frac{ \sin x}{x}  = 1 \bigg)

 =  \displaystyle   \frac{a + b}{a + b}

 = 1

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. The value of limited x to 0

sin7x+sin5x÷tan5x-tan2x is

https://brainly.in/question/28582236

2. Cos^-1(1-9^x/1+9^x) differentiate with respect to x

https://brainly.in/question/17839008

Similar questions