Math, asked by Anonymous, 21 days ago

Please help me in this question​

Attachments:

Answers

Answered by talpadadilip417
5

Step-by-step explanation:

 \color{olive}\[ \begin{array}{l}  \tt \: consider \: \sum_{r=1}^{10}\left(2r - 1\right) \\  \\  \tt=\sum_{r=1}^{10}\left(4 r^{2}+1-4 r\right) \\ \\   \tt=\sum_{r=1}^{10} 4 r^{2}-\sum_{r=1}^{10} 4 r+\sum_{r=1}^{10} 1 \\ \\  \tt =4 \sum_{r=1}^{10} r^{2}-4 \sum_{r=1}^{10} r+\sum_{r=1}^{10} 1 \ldots \ldots .(1) \\ \\  \tt  \text{We know that} \sum_{r=1}^{n} r^{2}=  \[ \dfrac{n(n+1)(2 n+1)}{6} \] \\  \\  \[ \begin{array}{l}  \tt\sum_{r=1}^{n} r=\dfrac{n(n+1)}{2} \\ \\  \text { and } \tt \sum_{r=1}^{n} 1=n \end{array} \] \\   \\ \text{ Using these results in equation (1) becomes: } \\ \\  \[ \begin{array}{l} \tt =4 \times \dfrac{10(11)(21)}{6}-4 \times \dfrac{10(11)}{2}+10 \\ \\   \tt=1540-220+10=1330 \end{array} \] \end{array} \]

Answered by Anonymous
9

Answer:

Consider,

 \small \longrightarrow \sum \limits_{r = 1}^{10}(2r - 1)^{2}

 \small \longrightarrow \sum \limits_{r = 1}^{10}(4 {r}^{2}   + 1 - 4r)

 \small \longrightarrow \sum \limits_{r = 1}^{10}(4 {r}^{2})   +\sum \limits_{r = 1}^{10}( 1) -\sum \limits_{r = 1}^{10}( 4r)

{ \small \longrightarrow 4 \sum \limits_{r = 1}^{10}({r}^{2})   +10 -4\sum \limits_{r = 1}^{10}(r)}

Now we know that:

  • \small{\sum\limits_{r=1}^n r = \dfrac{n(n+1)}{2}}
  • \small{\sum\limits_{r=1}^n r^2= \dfrac{n(n+1)(2n+1)}{6}}

By using these results, we get:

{ \small \longrightarrow 4 \left( \dfrac{10(10 + 1)(20 + 1)}{6}  \right) +10 -4\left( \dfrac{10(10 + 1)}{2} \right)}

{ \small \longrightarrow 4 \left( \dfrac{10(11)(21)}{6}  \right) +10 -4\left( \dfrac{10(11)}{2} \right)}

{ \small \longrightarrow 4( 5)(11)(7)  +10 -4( 5)(11) }

{ \small \longrightarrow 1540+10 -220}

{ \small \longrightarrow 1330}

So the required answer is:

 \underline{ \boxed{  \sum \limits_{r = 1}^{10}(2r - 1)^{2}  = 1330}}

Similar questions